로그인

While deriving the Doppler formula for the observed frequency of a sound wave, it is assumed that the speed of sound in the medium is greater than the source's speed through it. When this condition is breached, a shock wave occurs.

When the source's speed approaches the speed of sound, constructive interference between successive wavefronts emitted by the source occurs immediately behind it. Initially, scientists believed that this constructive interference would result in such high pressures that an airplane, for instance, would be unable to breach the speed of sound and would eventually get destroyed. However, airplanes can now fly at speeds greater than the speed of sound, also called supersonic speeds. They create a familiar conical structure of waves behind them.

The phenomenon of shock waves is three-dimensional, and gets its name from the sharp difference of pressure along the edges of the cone. This cone moves along with the sound's source,and is narrower if the Mach number (the speed of the source divided by the speed of sound) is higher. An observer can only experience the shock wave only after the source has passed them. When they do, they experience a sudden change of pressure, known as a sonic boom.

Shock waves are a specific case of a general wave phenomenon called bow wakes. The same principle of shock waves applies to other waves, such as surface water waves. When a duck or a steamer moves over the water's surface at high speed, it leaves behind a bow wake over the water's surface.

This text is adapted from Openstax, University Physics Volume 1, Section 17.8: Shock Waves.

Tags
Shock WavesDoppler FormulaObserved FrequencySpeed Of SoundConstructive InterferenceSupersonic SpeedsMach NumberSonic BoomBow WakesPressure ChangesWavefrontsConical Structure

장에서 17:

article

Now Playing

17.16 : Shock Waves

Sound

2.0K Views

article

17.1 : 음파

Sound

7.1K Views

article

17.2 : 압력파와 같은 소리

Sound

1.0K Views

article

17.3 : 음파에 대한 인식

Sound

4.4K Views

article

17.4 : 고체와 액체의 음속

Sound

2.7K Views

article

17.5 : 가스의 음속

Sound

2.8K Views

article

17.6 : 액체에서 음속의 도출

Sound

433 Views

article

17.7 : 사운드 강도

Sound

4.0K Views

article

17.8 : 사운드 강도 수준

Sound

4.0K Views

article

17.9 : 음파의 강도와 압력

Sound

972 Views

article

17.10 : 음파: 간섭

Sound

3.6K Views

article

17.11 : 간섭: 경로 길이

Sound

1.2K Views

article

17.12 : 음파: 공명

Sound

2.5K Views

article

17.13 : 박동

Sound

435 Views

article

17.14 : 도플러 효과 - I

Sound

3.4K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유