로그인

Another method of radical formation is the elimination process. It is the opposite of the addition route and is driven by the instability of the radical. For example, as depicted in Figure 1, dibenzoyl peroxide yields a pair of unstable radicals upon homolysis. Given its instability, this radical spontaneously undergoes elimination via a C–C bond cleavage to form a relatively more stable phenyl radical. The mechanism involves cleavage of the bond between the α and β positions with respect to the radical, leading to the formation of an unsaturated molecule as the byproduct.

Figure1

Figure 1. The elimination reaction of dibenzoyl peroxide for the formation of radicals.

Tags
Radical FormationElimination ProcessDibenzoyl PeroxideHomolysisUnstable RadicalsC C Bond CleavagePhenyl RadicalMechanismUnsaturated MoleculeBond Cleavage

장에서 20:

article

Now Playing

20.7 : Radical Formation: Elimination

Radical Chemistry

1.6K Views

article

20.1 : 급진적 인 : 전자 구조 및 기하학

Radical Chemistry

3.8K Views

article

20.2 : 전자 상자성 공명(EPR) 분광법: 유기 라디칼

Radical Chemistry

2.3K Views

article

20.3 : 급진적 형성: 개요

Radical Chemistry

2.0K Views

article

20.4 : 라디칼 형성 : 상동 분해

Radical Chemistry

3.3K Views

article

20.5 : 급진적 형성 : 추상화

Radical Chemistry

3.3K Views

article

20.6 : 급진적 형성: 덧셈

Radical Chemistry

1.6K Views

article

20.8 : Radical Reactivity: 개요

Radical Chemistry

1.8K Views

article

20.9 : 급진적 반응성: 입체 효과

Radical Chemistry

1.8K Views

article

20.10 : 라디칼 반응성: 집중 효과

Radical Chemistry

1.5K Views

article

20.11 : 라디칼 반응성: 친전자성 라디칼

Radical Chemistry

1.8K Views

article

20.12 : 라디칼 반응성: 친핵성 라디칼

Radical Chemistry

2.0K Views

article

20.13 : 라디칼 반응성: 분자내 vs 분자간

Radical Chemistry

1.7K Views

article

20.14 : 급진적 자율산화

Radical Chemistry

2.1K Views

article

20.15 : Allylic 및 Benzylic Alcohols의 라디칼 산화

Radical Chemistry

1.8K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유