로그인

Wilhelm Rudolph Fittig discovered the pinacol coupling reaction in 1859. It is a radical dimerization reaction and involves the reductive coupling of aldehydes or ketones in the presence of hydrocarbon solvent to yield vicinal diols.

Figure1

The radical reaction is initiated by a single electron transfer from metals like sodium and magnesium to a spin-paired molecule like aldehydes or ketones to generate a ketyl—a radical anion. The ketyl has a radical character on the carbon atom and a charge on the oxygen atom. Its resonance form has aradical positioned on the oxygen atom and a charge on the carbon atom.

The behavior of ketyl is greatly influenced by the solvent in which the reaction is carried out.

Protic solvents, like ethanol, protonate the ketyl. This is followed by a second electron transfer from metal to give an alkoxide anion. Further, the acidification of an alkoxide anion forms alcohol. Here, the metal dissolves with the reaction, acting as a source of free electrons.

In the presence of aprotic solvents, like benzene or ether, ketyl radical anions do not undergo protonation due to the absence of protons. This promotes ketyl dimerization and forms a part of the famous pinacol coupling reaction.

Interestingly, metals like magnesium, aluminum, or sodium, favor the reaction by forming covalent metal-oxygen bonds, which coordinate with several ketyl radicals, reacting rapidly to form a diol. Notably, the electrostatic repulsions between the negative charges of the ketyls do not hamper dimerization. In summary, protic solvents favor the formation of alcohol, while aprotic solvents favor vicinal diols.

Tags

Vicinal DiolsReductive CouplingPinacol CouplingRadical DimerizationAldehydesKetonesKetyl RadicalElectron TransferProtic SolventsAprotic SolventsAlkoxide AnionDiol FormationHydrocarbon Solvent

장에서 20:

article

Now Playing

20.25 : Vicinal Diols via Reductive Coupling of Aldehydes or Ketones: Pinacol Coupling Overview

Radical Chemistry

1.7K Views

article

20.1 : 급진적 인 : 전자 구조 및 기하학

Radical Chemistry

3.8K Views

article

20.2 : 전자 상자성 공명(EPR) 분광법: 유기 라디칼

Radical Chemistry

2.3K Views

article

20.3 : 급진적 형성: 개요

Radical Chemistry

2.0K Views

article

20.4 : 라디칼 형성 : 상동 분해

Radical Chemistry

3.3K Views

article

20.5 : 급진적 형성 : 추상화

Radical Chemistry

3.3K Views

article

20.6 : 급진적 형성: 덧셈

Radical Chemistry

1.6K Views

article

20.7 : 급진적 형성: 제거

Radical Chemistry

1.6K Views

article

20.8 : Radical Reactivity: 개요

Radical Chemistry

1.9K Views

article

20.9 : 급진적 반응성: 입체 효과

Radical Chemistry

1.8K Views

article

20.10 : 라디칼 반응성: 집중 효과

Radical Chemistry

1.5K Views

article

20.11 : 라디칼 반응성: 친전자성 라디칼

Radical Chemistry

1.8K Views

article

20.12 : 라디칼 반응성: 친핵성 라디칼

Radical Chemistry

2.0K Views

article

20.13 : 라디칼 반응성: 분자내 vs 분자간

Radical Chemistry

1.7K Views

article

20.14 : 급진적 자율산화

Radical Chemistry

2.1K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유