JoVE Logo

로그인

15.21 : Crossed Aldol Reactions: Overview

Crossed aldol addition is the reaction between two different carbonyl compounds under acidic or basic conditions. Here, both the carbonyl compounds function as nucleophiles and electrophiles. As shown in Figure 1, such a reaction yields a mixture of products, two of which are formed via self-condensation, while the remaining two are formed via crossed-condensation. Without adjustment, the reaction's usefulness in organic chemistry is decreased.

Figure1

Figure 1. Crossed aldol addition reaction of two different aldehydes

Various strategies are employed to prevent self-condensation and improve the reaction's efficiency. For example, if one of the two reacting carbonyl compounds has no α hydrogen, such as the formaldehyde, it cannot form the enolate ion in the presence of a base. Hence, the reaction of formaldehyde with another carbonyl compound that does have an α hydrogen yields a single crossed aldol product. Here, the formaldehyde functions exclusively as an electrophile. Claisen–Schmidt condensation, directed aldol reaction, and the Reformatsky reaction also aim to yield a single crossed aldol product.

Tags

Crossed Aldol ReactionsCarbonyl CompoundsNucleophilesElectrophilesSelf condensationCrossed condensationOrganic ChemistryReaction EfficiencyEnolate IonFormaldehydeClaisen Schmidt CondensationDirected Aldol ReactionReformatsky Reaction

장에서 15:

article

Now Playing

15.21 : Crossed Aldol Reactions: Overview

α-Carbon Chemistry: Enols, Enolates, and Enamines

5.2K Views

article

15.1 : Enols의 반응성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Views

article

15.2 : Enolate 이온의 반응성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Views

article

15.3 : 에놀(Enol)과 에놀라산(Enolate)의 종류

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.5K Views

article

15.4 : Enolate 메커니즘 규칙

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.0K Views

article

15.5 : Enolates의 위치 선택적 형성

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.5K Views

article

15.6 : Enolization의 입체화학적 효과

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.0K Views

article

15.7 : 알데히드와 케톤의 산 촉매 α-할로겐화

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.5K Views

article

15.8 : 알데히드와 케톤의 염기 촉진 α-할로겐화

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.3K Views

article

15.9 : 메틸 케톤의 다중 할로겐화: Haloform 반응

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Views

article

15.10 : α-Carboxylic Acid Derivatives의 할로겐화: 개요

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.11 : 카르복실산의 α-브롬화: 지옥-볼하르트-젤린스키 반응

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Views

article

15.12 : α-할로카르보닐 화합물의 반응: 친핵성 치환

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.13 : 에놀의 니트로화(nitrosation)

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Views

article

15.14 : C–C 결합 형성: Aldol 응축 개요

α-Carbon Chemistry: Enols, Enolates, and Enamines

13.4K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유