로그인

MicroRNA (miRNA) are short, regulatory RNA transcribed from introns (non-coding regions of a gene) or intergenic regions (stretches of DNA present between genes). Several processing steps are required to form biologically active, mature miRNA. The initial transcript, called primary miRNA (pri-mRNA), base-pairs with itself, forming a stem-loop structure. Within the nucleus, an endonuclease enzyme, called Drosha, shortens the stem-loop structure into hairpin-shaped pre-miRNA. After the pre-miRNA ends have been methylated to prevent degradation, it is exported from the nucleus into the cytoplasm.

In the cytoplasm, another endonuclease enzyme, called Dicer, cuts the pre-miRNA into a 21–24 nucleotide-long miRNA duplex. Then, Dicer cleaves one strand of the duplex, releasing a single strand of mature miRNA. The mature miRNA is loaded onto a protein complex called RNA-induced silencing complex (RISC), which the miRNA then guides to the complementary region of its target mRNA.

The extent of complementary base-pairing between miRNA and the 3' untranslated region of target mRNA determines the gene silencing mechanism. Extensive or near-perfect complementarity causes degradation of mRNA, whereas limited base-pairing inhibits translation. While silencing via mRNA degradation is irreversible, translation inhibition is reversible since stable mRNA can resume translation after elimination of the repressors.

Altered miRNA expression or function is observed in several types of cancers. For example, loss of let-7 miRNA is observed in lung, liver, breast, prostate, and ovarian cancer. Let-7 miRNA inhibits the expression of oncogenes—genes with the potential to cause cancer—that promote cell growth, survival, and proliferation. Therefore, loss of let-7 promotes tumor formation.

Tags
MicroRNAMiRNAPrimary MiRNAPri mRNAPre miRNADroshaDicerRNA induced Silencing ComplexRISCGene SilencingMRNA DegradationTranslation InhibitionLet 7 MiRNAOncogenesCancer

장에서 11:

article

Now Playing

11.11 : MicroRNAs

Control of Gene Expression

2.8K Views

article

11.1 : 세포 특이적 유전자 발현

Control of Gene Expression

4.5K Views

article

11.2 : 발현의 조절은 여러 단계에서 발생합니다

Control of Gene Expression

2.8K Views

article

11.3 : 시스 조절 서열

Control of Gene Expression

2.8K Views

article

11.4 : Transcription Regulators의 협력 결합

Control of Gene Expression

1.9K Views

article

11.5 : 원핵생물 전사 활성인자(Prokaryotic transcriptional activators and repressor)

Control of Gene Expression

8.1K Views

article

11.6 : 진핵생물 프로모터 영역(Eukaryotic Promoter Region)

Control of Gene Expression

2.8K Views

article

11.7 : 공동 활성자와 공동 억제자

Control of Gene Expression

2.2K Views

article

11.8 : 마스터 전사 레귤레이터

Control of Gene Expression

2.1K Views

article

11.9 : 조절된 mRNA 수송

Control of Gene Expression

2.7K Views

article

11.10 : mRNA 안정성 및 유전자 발현

Control of Gene Expression

2.6K Views

article

11.12 : 작은 간섭 RNA(siRNA)

Control of Gene Expression

3.3K Views

article

11.13 : lncRNA - 긴 비암호화 RNA

Control of Gene Expression

2.7K Views

article

11.14 : 후성유전학적 조절

Control of Gene Expression

2.9K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유