로그인

Synthesis of new DNA molecules is carried out by the enzyme DNA polymerase, which adds nucleotides on the daughter strand complementary to the template DNA strand. DNA polymerase has a higher affinity to add the correct base and ensures fidelity during DNA replication. Furthermore, it exhibits proofreading activity during replication, using an exonuclease domain that cuts off incorrect nucleotides from the nascent DNA strand.

Errors During Replication are Corrected by the DNA Polymerase Enzyme

Genomic DNA is synthesized in the 5’ to 3’ direction. Each cell contains a number of DNA polymerases that play different roles in synthesizing and correcting mistakes in the DNA. For example, DNA polymerase delta and epsilon possess proofreading ability when replicating nuclear DNA. These polymerases “read” each base after it is added to the new strand. If the newly-added base is incorrect, the polymerase reverses direction (moving from 3’ to 5’) and uses an exonucleolytic domain to cut off the incorrect base. Subsequently, the excised base is replaced with the correct base.

Mutations in the Exonuclease Domain of DNA Polymerase are Linked to Cancers

Proofreading is important for preventing mutations from occurring in newly-synthesized DNA, but what happens when the proofreading mechanism fails? When a mutation alters the exonuclease domain of DNA polymerase, it loses the ability to remove incorrect nucleotides. In consequence, mutations can accumulate rapidly throughout the genome. This type of mutation has been linked to various types of cancer.

Low-fidelity DNA Polymerase can Generate Mutated DNA Sequences

Modified DNA polymerases are used in laboratory science for polymerase chain reaction (PCR), an in vitro technique for making many copies of specific fragments of DNA. While high-fidelity polymerases are used when it is important that the end product is perfect, some techniques, such as error-prone PCR, seek to generate mutations in a stretch of DNA on purpose. These techniques use polymerases that have compromised proofreading ability.

Tags
DNA PolymeraseNucleotidesDNA ReplicationProofreading ActivityExonuclease DomainMutationsGenomic DNAPolymerase Chain Reaction PCRHigh fidelity PolymerasesError prone PCRCancer MutationsFidelityNascent DNA Strand

장에서 8:

article

Now Playing

8.5 : Proofreading

DNA Replication and Repair

5.8K Views

article

8.1 : 염기쌍(base-pairing) 및 DNA 복구

DNA Replication and Repair

64.3K Views

article

8.2 : DNA 복제 포크

DNA Replication and Repair

13.2K Views

article

8.3 : Lagging Strand Synthesis

DNA Replication and Repair

11.6K Views

article

8.4 : 리플리솜

DNA Replication and Repair

5.9K Views

article

8.6 : 원핵생물의 복제

DNA Replication and Repair

22.5K Views

article

8.7 : 진핵생물에서의 복제

DNA Replication and Repair

11.7K Views

article

8.8 : 텔로미어와 텔로머라제

DNA Replication and Repair

4.8K Views

article

8.9 : DNA 복구 개요

DNA Replication and Repair

7.3K Views

article

8.10 : 염기 절제 복구

DNA Replication and Repair

3.5K Views

article

8.11 : 뉴클레오티드 절제 복구

DNA Replication and Repair

3.3K Views

article

8.12 : 불일치 복구

DNA Replication and Repair

4.6K Views

article

8.13 : Double-strand 파손 수정

DNA Replication and Repair

3.0K Views

article

8.14 : 상동 재조합

DNA Replication and Repair

4.3K Views

article

8.15 : 유전자 변환

DNA Replication and Repair

2.2K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유