로그인

The magnetic field due to a volume current distribution given by the Biot–Savart Law can be expressed as follows:

Equation1

To evaluate the divergence of the magnetic field, the divergence is applied to both sides of the Biot–Savart equation:

Equation2

Applying the vector product rule, the term within the integral is simplified to the following equation:

Equation3

The first term involving the curl of the current density function is zero since the current density is independent of the field coordinates. Using vector analysis, the second term in the above equation also reduces to zero. Hence, the divergence of a magnetic field is zero:

Equation4

The zero divergence of the magnetic field is valid for any field, irrespective of whether the field is static or time-dependent. This equation states that the magnetic flux that passes through an arbitrary closed surface is zero. This is possible only if the number of magnetic field lines that enter the closed surface equals the number of field lines that exit through this closed surface. Thus, magnetic field lines always form closed loops. It also implies that magnetic monopoles do not exist.

To evaluate the curl of the magnetic field, the curl is applied to both sides of the Biot–Savart equation:

Equation5

Again, by applying vector analysis, the equation is simplified:

Equation6

The curl of the magnetic field equals the vacuum permeability multiplied by the current density. The same result is obtained by applying Stoke's theorem to the integral form of Ampere's Law:

Equation7

Since the above relation holds for any closed loop, the integrands are equal. This equation is called the differential form of Ampere's Law.

Tags
DivergenceCurlMagnetic FieldBiot Savart LawCurrent DensityVector AnalysisMagnetic FluxClosed SurfaceMagnetic Field LinesMagnetic MonopolesVacuum PermeabilityAmpere s LawStoke s Theorem

장에서 29:

article

Now Playing

29.8 : Divergence and Curl of Magnetic Field

Sources of Magnetic Fields

2.6K Views

article

29.1 : 움직이는 전하로 인한 자기장

Sources of Magnetic Fields

8.0K Views

article

29.2 : 비오-사바트 법칙

Sources of Magnetic Fields

5.5K Views

article

29.3 : Biot-Savart Law: 문제 해결

Sources of Magnetic Fields

2.2K Views

article

29.4 : 얇은 직선 와이어로 인한 자기장

Sources of Magnetic Fields

4.5K Views

article

29.5 : 두 개의 직선 와이어로 인한 자기장

Sources of Magnetic Fields

2.2K Views

article

29.6 : 두 개의 병렬 전류 사이의 자기력

Sources of Magnetic Fields

3.3K Views

article

29.7 : 전류 루프의 자기장

Sources of Magnetic Fields

4.1K Views

article

29.9 : 암페어의 법칙

Sources of Magnetic Fields

3.5K Views

article

29.10 : 암페어의 법칙: 문제 해결

Sources of Magnetic Fields

3.4K Views

article

29.11 : 솔레노이드

Sources of Magnetic Fields

2.4K Views

article

29.12 : 솔레노이드의 자기장

Sources of Magnetic Fields

3.5K Views

article

29.13 : 토로이드

Sources of Magnetic Fields

2.8K Views

article

29.14 : 자기 벡터 전위

Sources of Magnetic Fields

447 Views

article

29.15 : 자화된 물체로 인한 전위

Sources of Magnetic Fields

228 Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유