A conventional Raman spectrophotometer includes a laser source, a sample holding system, a wavelength selector, and a detector.

The monochromatic laser source, typically using visible or near-infrared radiation, generates a highly focused beam of light. This light interacts with the molecules of the sample, scattering some of the light. Liquid and gaseous samples are usually tested in ordinary glass capillaries, while solids can be analyzed as powders packed in capillaries or as potassium bromide pellets. The scattered light is collected using a separate lens and focused onto the entrance of a monochromator, which disperses the light into its constituent frequencies.

To ensure accurate results, the output is filtered extensively to remove stray laser radiation and Rayleigh scattering, which can interfere with the Raman signal. The optical signal is then converted into an electrical signal within the detector, often a charge-coupled device or photomultiplier tube, allowing it to be processed and visualized as a Raman spectrum.

In some cases, high-quality bandpass and notch filters are used in fiber-optic Raman spectrometers to minimize Rayleigh-scattered radiation. Another variation, the Fourier Transform Raman instrument, replaces the monochromator with a Michelson interferometer and uses a continuous-wave laser. After passing through the filters, the radiation is focused onto a cooled germanium detector for analysis.

장에서 13:

article

Now Playing

13.19 : Raman Spectroscopy Instrumentation: Overview

Molecular Vibrational Spectroscopy

144 Views

article

13.1 : Infrared (IR) Spectroscopy: Overview

Molecular Vibrational Spectroscopy

992 Views

article

13.2 : IR Spectroscopy: Molecular Vibration Overview

Molecular Vibrational Spectroscopy

1.4K Views

article

13.3 : IR Spectroscopy: Hooke's Law Approximation of Molecular Vibration

Molecular Vibrational Spectroscopy

800 Views

article

13.4 : IR Spectrometers

Molecular Vibrational Spectroscopy

781 Views

article

13.5 : IR Spectrum

Molecular Vibrational Spectroscopy

661 Views

article

13.6 : IR Absorption Frequency: Hybridization

Molecular Vibrational Spectroscopy

484 Views

article

13.7 : IR Absorption Frequency: Delocalization

Molecular Vibrational Spectroscopy

559 Views

article

13.8 : IR Frequency Region: X–H Stretching

Molecular Vibrational Spectroscopy

774 Views

article

13.9 : IR Frequency Region: Alkyne and Nitrile Stretching

Molecular Vibrational Spectroscopy

614 Views

article

13.10 : IR Frequency Region: Alkene and Carbonyl Stretching

Molecular Vibrational Spectroscopy

539 Views

article

13.11 : IR Frequency Region: Fingerprint Region

Molecular Vibrational Spectroscopy

545 Views

article

13.12 : IR Spectrum Peak Intensity: Amount of IR-Active Bonds

Molecular Vibrational Spectroscopy

506 Views

article

13.13 : IR Spectrum Peak Intensity: Dipole Moment

Molecular Vibrational Spectroscopy

513 Views

article

13.14 : IR Spectrum Peak Broadening: Hydrogen Bonding

Molecular Vibrational Spectroscopy

615 Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유