In an inverting amplifier, the input voltage is connected through a resistor to the inverting terminal. Meanwhile, the non-inverting terminal is grounded and a feedback resistor is established between the inverting and output terminal, as depicted in Figure 1.

Figure1

Figure 1: The inverting amplifier

The objective is to discern the relationship between the input voltage (vi) and the output voltage (vo). By applying Kirchhoff's Current Law (KCL) and presuming the operational amplifier to be ideal, the expression for gain is obtained. An inverting amplifier has the ability to reverse the polarity of the input signal while simultaneously amplifying it. It is worth noting that the gain depends solely on the external elements connected to the op-amp, with the gain being the feedback resistance divided by the input resistance.

Another critical application of the op-amp is seen in the noninverting amplifier, as illustrated in Figure 2.

Figure2

Figure 2: The non-inverting amplifier

Here, the input voltage (vi) is applied directly at the non-inverting input terminal, while resistor R is connected between the ground and the inverting terminal. The focus here is on the output voltage and the voltage gain. Applying KCL at the inverting terminal and substituting the voltage values gives an expression for voltage gain. If the feedback resistor gets short-circuited or if the input resistor is open-circuited, the gain transforms into unity, forming a voltage follower or unity gain amplifier. Such a circuit possesses a high input impedance, making it useful as an intermediate-stage (or buffer) amplifier to segregate one circuit from another.

Tags
Inverting AmplifierNon inverting AmplifierOp ampInput VoltageOutput VoltageGainFeedback ResistorKirchhoff s Current LawVoltage FollowerUnity Gain AmplifierHigh Input ImpedanceBuffer Amplifier

장에서 3:

article

Now Playing

3.3 : Inverting and Non-inverting OpAmps

Operational Amplifiers

338 Views

article

3.1 : 연산 증폭기

Operational Amplifiers

498 Views

article

3.2 : 연산 증폭기의 특성

Operational Amplifiers

336 Views

article

3.4 : 합 및 차이 연산 증폭기

Operational Amplifiers

347 Views

article

3.5 : Practical Op Amps의 특성

Operational Amplifiers

312 Views

article

3.6 : Integrator 및 Differentiator

Operational Amplifiers

623 Views

article

3.7 : 캐스케이드 연산 증폭기

Operational Amplifiers

472 Views

article

3.8 : 계측 증폭기

Operational Amplifiers

248 Views

article

3.9 : 디자인 예제: Vintage Mixing Console

Operational Amplifiers

149 Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유