JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다. 전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
Method Article
Fizzy extraction is a new laboratory technique for analysis of volatile and semivolatile compounds. A carrier gas is dissolved in the liquid sample by applying overpressure and stirring the sample. The sample chamber is then decompressed. The analyte species are liberated to the gas phase due to effervescence.
Chemical analysis of volatile and semivolatile compounds dissolved in liquid samples can be challenging. The dissolved components need to be brought to the gas phase, and efficiently transferred to a detection system. Fizzy extraction takes advantage of the effervescence phenomenon. First, a carrier gas (here, carbon dioxide) is dissolved in the sample by applying overpressure and stirring the sample. Second, the sample chamber is decompressed abruptly. Decompression leads to the formation of numerous carrier gas bubbles in the sample liquid. These bubbles assist the release of the dissolved analyte species from the liquid to the gas phase. The released analytes are immediately transferred to the atmospheric pressure chemical ionization interface of a triple quadrupole mass spectrometer. The ionizable analyte species give rise to mass spectrometric signals in the time domain. Because the release of the analyte species occurs over short periods of time (a few seconds), the temporal signals have high amplitudes and high signal-to-noise ratios. The amplitudes and areas of the temporal peaks can then be correlated with concentrations of the analytes in the liquid samples subjected to fizzy extraction, which enables quantitative analysis. The advantages of fizzy extraction include: simplicity, speed, and limited use of chemicals (solvents).
Various phenomena observed in nature and daily life are linked to gas-liquid phase equilibriums. Carbon dioxide is dissolved in soft and alcoholic drinks under elevated pressure. When a bottle of such a fizzy drink is opened, the pressure drops down, and gas bubbles rush to the liquid surface. In this case, effervescence improves organoleptic properties of beverages. The release of gas bubbles is also the main cause of decompression sickness ("the bends")1. Due to sudden decompression, bubbles form in divers' bodies. The persons suffering from the decompression sickness are treated in hyperbaric chambers.
Gas bubbles have various applications in analytical chemistry. Notably, sparging methods rely on passing gas bubbles through liquid samples to extract volatile compounds2. For example, a method called "purge-closed loop" is combined with gas chromatography to enable rapid analysis of dissolved volatiles3. While sparging can continuously extract volatiles over time, it does not confine them in space or time. The released gas-phase species need to be trapped, and-in some cases-concentrated by applying a temperature program or using sorbents. Thus, there is a need to introduce new on-line sample treatment strategies, which could reduce the number of steps, and-at the same time-concentrate volatile analytes in space or time.
To address the challenge of extracting volatile compounds from liquid samples, and performing analysis on-line, we recently introduced "fizzy extraction"4. This new technique takes advantage of the effervescence phenomenon. Briefly, a carrier gas (here, carbon dioxide) is first dissolved in the sample by applying overpressure and stirring the sample. Then, the sample chamber is decompressed abruptly. The sudden decompression leads to formation of numerous carrier gas bubbles in the sample liquid. These bubbles assist the release of dissolved analyte species from the liquid to the gas phase. The released analytes are immediately transferred to the mass spectrometer, producing signals in the time domain. Because the release of the analyte species is confined to a short period of time (a few seconds), the temporal signals have high amplitudes and high signal-to-noise ratios.
The pressures involved in the fizzy extraction process are very low (~150 kPa)4; much lower than in supercritical fluid extraction5 (e.g., ≥10 MPa). The technique does not require the use of any special consumable items (columns, cartridges). Only small volumes of solvents are used for dilution and cleaning. The extraction device can be assembled by chemists with medium technical skills using widely available parts4; for example, open-source electronic modules6,7. Fizzy extraction can be coupled on-line with modern mass spectrometers equipped with atmospheric pressure chemical ionization (APCI) interface. Because gas-phase extracts are transferred to the ion source, operation of fizzy extraction does not substantially contaminate vulnerable parts of the mass spectrometer.
The purpose of this visualized experiment article is to guide the viewers on how to implement fizzy extraction in a simple analytical task. While the core of the fizzy extraction system is as described in our previous report4, several improvements have been introduced to make the operation more straightforward. A microcontroller equipped with an LCD screen shield has been incorporated into the system to display the key extraction parameters in real time. All the functions are programmed in the microcontroller scripts, and there is no longer a need to use an external computer to control the extraction system.
Access restricted. Please log in or start a trial to view this content.
This protocol assumes that all the steps are performed according to the relevant laboratory safety regulations. Some of the steps use commercial instruments - in those cases, manufacturer guidelines need to be followed. When handling toxic chemicals, MSDS guidelines need to be followed. The custom-made equipment4 must be operated cautiously; especially, when handling pressurized gases and live electric wiring.
1. Preparation of Standard Solution
2. Preparation of Real Sample
3. Spiking the Real Sample with Standard Solution
4. Setting Up the Fizzy Extraction System
5. Performing Fizzy Extraction
6. Data Analysis
Access restricted. Please log in or start a trial to view this content.
At the beginning, the fizzy extraction system is tested with a standard solution. Subsequently, the real sample and real sample spiked with standard are analyzed. The areas of the temporal peaks of extraction events are correlated with concentrations of the analytes in the liquid samples subjected to fizzy extraction, which enables quantitative analysis. Here, we performed double standard addition to demonstrate quantitative capabilities of the technique (Figure 7
Access restricted. Please log in or start a trial to view this content.
Several smart ways to deliver samples to a mass spectrometer were developed in the studies conducted during the past three decades (e.g., references8,9,10,11,12,13,14). One of the goals of those studies was to simplify preparation of samples for analysis. To achieve that goal, vario...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
We would like to thank the Ministry of Science and Technology of Taiwan (grant number: MOST 104-2628-M-009-003-MY4) for the financial support of this work.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Water | Fisher | W6212 | Diluent |
Ethanol | Sigma-Aldrich | 32221-2.5L | Diluent |
(R)-(+)-Limonene | Sigma-Aldrich | 183164-100ML | Standard |
Carbon dioxide | ChiaLung | n/a | Carrier gas |
Cellulose tissue, Kimwipes Kimtech | Kimberly-Clark | 34120 | Used for cleaning |
Triple quadrupole mass spectrometer | Shimadzu | LCMS-8030 | Detection system |
Atmospheric pressure chemical ionization interface | Shimadzu | Duis | Ion source |
20-mL screw top headspace glass vial with septum cap | Thermo Fisher Scientific | D-52379 | Sample vial |
LabSolutions software | Shimadzu | n/a | version 5.82 |
PeakFit software | Systat Software | n/a | version 4.12 |
OriginPro software | OriginLab | n/a | version 8 |
Access restricted. Please log in or start a trial to view this content.
JoVE'article의 텍스트 или 그림을 다시 사용하시려면 허가 살펴보기
허가 살펴보기This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. 판권 소유