Characterization of Magnetic Components

Overview

Source: Ali Bazzi, Department of Electrical Engineering, University of Connecticut, Storrs, CT.

The objective of this experiment is to achieve hands-on experience with different magnetic components from design and material perspectives. This experiment covers B-H curves of magnetic material and inductor design through identifying unknown design factors. The B-H curve of a magnetic element, such as an inductor or transformer, is a characteristic of the magnetic material forming the core around which windings are wrapped. This characteristic provides information about the magnetic flux density that the core can handle with respect to the current flowing in the windings. It also provides information about limits before the core is magnetically saturated, i.e. when pushing more current through the coil leads to no further magnetic flux flow.

Procedure

1. Relative Permeability Identification

Follow the procedure to find the relative permeability of the small inductor (yellow/white ferrite core). The core dimensions are shown in Fig. 2, and the number of turns is N=75.

  1. Using a LCR meter, measure the inductance of the inductor at both 120 Hz and 1000 Hz.
  2. Build the circuit in Fig. 1 on a proto-board, but keep the function generator output disconnected from the proto-board.
  3. Check a differential voltage pr

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Results

In order to find the relative permeability of the core material, two approaches can be used. The first approach is to use an LCR meter, where the inductance (L) of a coil made with a known number of turns (N) is measured, and then the relative permeability can be calculated as follows:

Reluctance of the core: Equation 7 (7)

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Application and Summary

Even though inductors and other electro-magnetic devices (e.g., transformers) are very common in many electrical, electronic, and mechanical systems, buying inductors for a specific application is not trivial. Even when an inductor is bought, datasheet information may still have ambiguities on the actual material, number of turns, and other details. The tests in this experiment are especially useful for engineers and technicians who plan to build their own inductors or characterize off-the-shelf ones. This is co

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tags
Magnetic ComponentsInductorsTransformersMagnetic MaterialCoreCoilCurrent FlowMagnetic FieldPermeabilityMagnetizing ForceMagnetic FluxB H CurveMagnetic SaturationMeasurementCharacterizationWindingsFlux DensityHysteresis

건너뛰기...

0:06

Overview

1:21

Principles of Magnetic Component Characterization

4:04

Measuring Relative Permeability

6:12

Identifying the Number of Turns

7:08

B-H Curve of a 60 Hz Transformer

8:04

Representative Results

8:50

Applications

10:15

Summary

이 컬렉션의 비디오:

article

Now Playing

Characterization of Magnetic Components

Electrical Engineering

14.9K Views

article

전기 안전 주의사항 및 기본 장비

Electrical Engineering

144.4K Views

article

파워 폴 보드 소개

Electrical Engineering

12.4K Views

article

DC/DC 부스트 컨버터

Electrical Engineering

56.5K Views

article

DC/DC 벅 컨버터

Electrical Engineering

21.0K Views

article

플라이백 컨버터

Electrical Engineering

13.2K Views

article

단상 변압기

Electrical Engineering

20.1K Views

article

단상 정류기

Electrical Engineering

23.3K Views

article

사이리스터 정류기

Electrical Engineering

17.4K Views

article

단상 인버터

Electrical Engineering

17.9K Views

article

DC 모터

Electrical Engineering

23.3K Views

article

AC 인덕션 모터 특성

Electrical Engineering

11.6K Views

article

VFD 공급 AC 유도 장치

Electrical Engineering

6.9K Views

article

AC 동기식 장치 동기화

Electrical Engineering

21.5K Views

article

AC 동기식 장치 특성

Electrical Engineering

14.2K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유