Tests on Fresh Concrete

Overview

Source: Roberto Leon, Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA

Concrete consists of two phases, a cement paste phase comprised of cement, water, and air, and an aggregate phase comprised of coarse and fine aggregates. There are two key considerations when designing a concrete mix. First, the concrete must be workable and easy to cast in the forms in its fresh condition, even when the forms are packed with steel reinforcement. In this condition, it is the rheology of concrete that is important. Second, the mix must produce a hardened concrete of specified strength at 28 days (or similar specified time) that is durable and provides good serviceability.

In this laboratory exercise, a method of concrete mixture proportioning, named the trial batch method, will be explored. The concrete produced will be used in conducting typical tests to determine the principal characteristics of fresh concrete, including slump, flowability, air content, and density. The trial batch method is a simple, empirical approach to mixture design.

The objectives of this experiment are fourfold: (1) to use the trial batch mix method to determine optimum proportions of aggregates, cement, and water for concrete to meet specified slump requirements, (2) to learn concrete mixing practice in a laboratory environment, (3) to observe the characteristic properties of fresh concrete, and (4) to prepare 4"x8" concrete cylinders for subsequent evaluation.

Procedure

The procedure below first describes the mixing process and then the typical tests (slump, density, and air content) used in the field to determine workability, consistency and quality. The procedure described here has been found to work well with a small concrete mixer.

1. Mixing Concrete by the Trial Method

  1. Weigh quantities of coarse aggregate and fine aggregate and store them in separate containers. Record the exact weights on the data sheet.
  2. Weigh the quantity of cemen

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Results

In general, mixes such as the one described above will have slumps of 3 to 4 inches. Such values are common for small jobs with little steel congestion in the forms. In modern construction, the widespread use of superplasticizers has meant that it is economical to get much higher slumps (6 to 10 inches, i.e., self-leveling concrete). Non-air-entrained mixes will show air contents below 2%, while air-entrained mixes, depending on admixture dosage, will show 5% to 8% air content. The uni

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Application and Summary

Slump cone and flow table tests are in-situ test results used to determine if the concrete being delivered to the site has the specified workability. These tests are meant to ensure an adequate rheology for the mix, i.e., a good initial "viscosity" that lasts long enough for the concrete to get from the batching plant to its final position in the forms without leaving large voids or similar defects around the reinforcement. Additionally, the air-content test is key to ensuring long-term durability in areas where

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tags
ConcreteConstruction MaterialConcrete MixtureRheologyTrial Batch MethodFresh ConcreteViscosityBatching PlantConstruction SiteIn Situ TestLaboratory TestingCementWaterCoarse AggregatesFine AggregatesAir ContentWater to cement RatioStrength Of Concrete28 Days After Casting

건너뛰기...

0:08

Overview

1:17

Principles of the Trial Batch Method

4:24

Mixing Concrete by the Trial Batch Method

7:10

Preparing Concrete Test Cylinders

8:05

Results

9:29

Applications

10:58

Summary

이 컬렉션의 비디오:

article

Now Playing

Tests on Fresh Concrete

Structural Engineering

25.7K Views

article

재료 상수

Structural Engineering

23.4K Views

article

강의 응력-변형 특성

Structural Engineering

108.8K Views

article

알루미늄의 응력-변형 특성

Structural Engineering

88.0K Views

article

다양한 온도 조건에서 냉간 성형 및 열연 강판의 샤르피 충격 시험

Structural Engineering

32.1K Views

article

로크웰 경도 시험 및 강철 처리 효과

Structural Engineering

28.3K Views

article

강철 기둥의 좌굴

Structural Engineering

36.0K Views

article

구조 역학

Structural Engineering

11.4K Views

article

금속 피로

Structural Engineering

40.2K Views

article

폴리머의 인장 시험

Structural Engineering

25.2K Views

article

섬유 강화 고분자 재료의 인장 시험

Structural Engineering

14.3K Views

article

콘크리트 및 아스팔트 혼합물용 골재

Structural Engineering

12.0K Views

article

경화 콘크리트 대상 압축 테스트

Structural Engineering

15.1K Views

article

인장 강화 콘크리트 시험

Structural Engineering

23.5K Views

article

목재 테스트

Structural Engineering

32.8K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유