Tensile Strength of Resorbable Biomaterials

Overview

Source: Peiman Shahbeigi-Roodposhti and Sina Shahbazmohamadi, Biomedical Engineering Department, University of Connecticut, Storrs, Connecticut

For over 4000 years, sutures have been used as a medical intervention. The earliest records indicate linen was the biomaterial of choice. Catgut, which is still in use today, was reportedly used to treat gladiators around 150 AD. Today, there are numerous materials being used for sutures. Sutures are classified by their composition (natural or synthetic) and their absorption (non-resorbable or resorbable).

Resorbable (or absorbable) sutures degrade in the body through either enzymatic degradation or programmed degradation caused by the interaction of water with specific groups in the polymer chain. These sutures are often created from synthetic materials, such as polyglycolic acid, polydioxanone, and polycaprolactone, or natural biomaterials, such as silk. They are usually used for certain internal procedures, like general surgery. Resorbable sutures will hold the wound together for a time frame long enough for healing, but then they eventually disintegrate by the body. On the other hand, non-resorbable sutures do not degrade and must be extracted. They are usually derived from polypropylene, nylon, and stainless-steel. These sutures are usually implemented for orthopedic and cardiac surgery and require a medical professional to remove them at a later date.

Here, the tensile strength of two types of resorbable sutures will be tested after exposing them to neutral, acidic, and alkaline solutions, which correspond to the different pH environments found within the human body. The test will consist of two parts. First, control samples will be prepared and analyzed via tensile testing. Then, samples will be tested after the continuous exposure to solutions of varying pH over the course of several weeks.

Procedure

1. Sample preparation

  1. Create six labels containing the information below, and attach the labels onto screw-top test tubes.
    1. Date: month and day
    2. Sample type: polyglyconate or polydioxanone
    3. Solution type:  acidic (A), alkaline (B), or neutral (N) solution with pH ranging between 2-14.
  2. Open the suture packaging and remove the suture. Cut off the needle and discard it into the sharps container.
  3. Cut the suture into 3 pieces that are approximat

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Results

Over the course of five weeks, all treated specimens were tested and analyzed. From the overall trials, the average tensile strengths were calculated using Equation 1:

Equation 1   (1)

The standard deviations of all the forces at failure with respect to suture type and solution

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Application and Summary

In this experiment, the tensile strength of sutures in different pH environments were evaluated. Over five weeks, the tensile strengths of two different types of sutures were explored after exposure to acidic, alkaline, and neutral solutions. The results overwhelmingly indicate that bioabsorbable sutures will degrade over time in any pH environment.

Although the polyglyconate sutures degrade at a faster rate, the remain stronger compared to the polydioxanone sutures. The experimental results a

Log in or to access full content. Learn more about your institution’s access to JoVE content here

References
  1. Wise, Donald L., et al. Encyclopedic Handbook of Biomaterials and Bioengineering. Marcel Dekker, Inc., New York. 1995. 567-569.
  2. Dattilo, P.P., King, M.W., Cassill, N.L., et al. Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture. J. Text. & App., Tech. & Mgmt. 2002, 2, 1
Tags
Tensile StrengthResorbable BiomaterialsSuturesCompositionNatural MaterialsSynthetic MaterialsAbsorptionNon resorbableResorbableDegradationWater InteractionPolymer ChainWound HealingOxidative DegradationHydrolytic DegradationEnzymatic DegradationOxidationChain ScissionPolyestersPolydioxanone

건너뛰기...

0:07

Overview

1:10

Principles of Resorbable Biomaterials

3:08

Sample Preparation

4:45

Control Sample Test

5:51

Strength Loss Profile

6:59

Results

8:20

Applications

9:41

Summary

이 컬렉션의 비디오:

article

Now Playing

Tensile Strength of Resorbable Biomaterials

Biomedical Engineering

7.5K Views

article

광학 및 공초점 현미경을 사용한 생물학적 시료 이미징

Biomedical Engineering

35.6K Views

article

생물학적 시료의 SEM 이미징

Biomedical Engineering

23.5K Views

article

나노 약물 운반체의 생체 분포: SEM 응용

Biomedical Engineering

9.3K Views

article

복부 대동맥의 고주파 초음파 영상

Biomedical Engineering

14.4K Views

article

복부대동맥류의 정량적 변형 매핑

Biomedical Engineering

4.6K Views

article

신하 대동맥에서 혈액과 지질을 영상화하기 위한 광음향 단층 촬영

Biomedical Engineering

5.7K Views

article

심장 자기 공명 영상

Biomedical Engineering

14.7K Views

article

뇌동맥류 내 혈류의 전산 유체 역학 시뮬레이션

Biomedical Engineering

11.7K Views

article

복부 대동맥류의 근적외선 형광 영상

Biomedical Engineering

8.2K Views

article

비침습적 혈압 측정 기법

Biomedical Engineering

11.8K Views

article

ECG (심전도) 신호 수집 및 분석

Biomedical Engineering

104.3K Views

article

쥐 척수의 마이크로 CT 영상

Biomedical Engineering

7.9K Views

article

쥐의 비침습성 ACL 손상 후 무릎 관절 퇴행 시각화

Biomedical Engineering

8.2K Views

article

심장 기능 시각화를 위한 SPECT 및 CT 이미징 결합

Biomedical Engineering

11.0K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유