Zaloguj się

The equilibrium between a liquid and its vapor depends on the temperature of the system; a rise in temperature causes a corresponding rise in the vapor pressure of its liquid. The Clausius-Clapeyron equation gives the quantitative relation between a substance’s vapor pressure (P) and its temperature (T); it predicts the rate at which vapor pressure increases per unit increase in temperature.

Eq1

where ΔHvap is the enthalpy of vaporization for the liquid, R is the gas constant, and A is a constant whose value depends on the chemical identity of the substance. Temperature (T) must be in kelvin in this equation. However, since the relationship between vapor pressure and temperature is not linear, the equation is often rearranged into logarithmic form to yield the linear equation:

Eq2

For any liquid, if the enthalpy of vaporization and vapor pressure at a particular temperature is known, the Clausius-Clapeyron equation allows to determine the liquid’s vapor pressure at a different temperature. To do this, the linear equation may be expressed in a two-point format. If at temperature T1, the vapor pressure is P1, and at temperature T2, the vapor pressure is P2, the corresponding linear equations are:

Eq3

Since the constant, A, is the same, these two equations may be rearranged to isolate ln A and then set them equal to one another:

Eq4

which can be combined into:

Eq5

This text is adapted from Openstax, Chemistry 2e, Section 10.3: Phase Transitions.

Tagi
Clausius Clapeyron EquationVapor PressureTemperature DependenceExponential CurveNatural LogStraight LineIdeal Gas ConstantMolar Heat Of VaporizationEquilibrium Vapor PressuresExperimental MeasurementsReciprocal TemperatureEthanol Vapor PressureSlope Of The LineJoules Per MoleTwo point Form

Z rozdziału 11:

article

Now Playing

11.9 : Clausius-Clapeyron Equation

Liquids, Solids, and Intermolecular Forces

54.5K Wyświetleń

article

11.1 : Porównanie molekularne gazów, cieczy i ciał stałych

Liquids, Solids, and Intermolecular Forces

39.6K Wyświetleń

article

11.2 : Siły międzycząsteczkowe i wewnątrzcząsteczkowe

Liquids, Solids, and Intermolecular Forces

83.4K Wyświetleń

article

11.3 : Siły międzycząsteczkowe

Liquids, Solids, and Intermolecular Forces

54.8K Wyświetleń

article

11.4 : Porównanie sił międzycząsteczkowych: temperatura topnienia, temperatura wrzenia i mieszalność

Liquids, Solids, and Intermolecular Forces

43.2K Wyświetleń

article

11.5 : Napięcie powierzchniowe, działanie kapilarne i lepkość

Liquids, Solids, and Intermolecular Forces

27.1K Wyświetleń

article

11.6 : Przejścia fazowe

Liquids, Solids, and Intermolecular Forces

18.4K Wyświetleń

article

11.7 : Przemiany fazowe: parowanie i kondensacja

Liquids, Solids, and Intermolecular Forces

16.7K Wyświetleń

article

11.8 : Ciśnienie pary

Liquids, Solids, and Intermolecular Forces

33.6K Wyświetleń

article

11.10 : Przemiany fazowe: topnienie i zamrażanie

Liquids, Solids, and Intermolecular Forces

12.1K Wyświetleń

article

11.11 : Przejścia fazowe: sublimacja i osadzanie

Liquids, Solids, and Intermolecular Forces

16.4K Wyświetleń

article

11.12 : Krzywe ogrzewania i chłodzenia

Liquids, Solids, and Intermolecular Forces

21.7K Wyświetleń

article

11.13 : Diagramy fazowe

Liquids, Solids, and Intermolecular Forces

38.0K Wyświetleń

article

11.14 : Struktury brył

Liquids, Solids, and Intermolecular Forces

13.3K Wyświetleń

article

11.15 : Molekularny i jonowy Brył

Liquids, Solids, and Intermolecular Forces

16.3K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone