Entrar

O equilíbrio entre um líquido e o seu vapor depende da temperatura do sistema; um aumento da temperatura provoca um aumento correspondente da pressão de vapor do seu líquido. A equação de Clausius-Clapeyron fornece a relação quantitativa entre a pressão de vapor de uma substância (P) e a sua temperatura (T); ela prevê a taxa à qual a pressão de vapor aumenta por unidade de aumento da temperatura.

Eq1

onde ΔHvap é a entalpia de vaporização para o líquido, R é a constante de gás, e A é uma constante cujo valor depende da identidade química da substância. A temperatura (T) deve estar em kelvin nesta equação. No entanto, como a relação entre pressão de vapor e temperatura não é linear, a equação é frequentemente rearranjada em forma logarítmica para produzir a equação linear:

Eq2

Para qualquer líquido, se for conhecida a entalpia da vaporização e a pressão de vapor a uma determinada temperatura, a equação de Clausius-Clapeyron permite determinar a pressão de vapor do líquido a uma temperatura diferente. Para isso, a equação linear pode ser expressa em formato de dois pontos. Se, à temperatura T1, a pressão de vapor for P1, e à temperatura T2, a pressão de vapor for P2, as equações lineares correspondentes são:

Eq3

Como a constante, A, é a mesma, essas duas equações podem ser rearranjadas para isolar ln A e defini-las então iguais uma à outra:

Eq4

o que pode ser combinado em:

Eq5

Este texto é adaptado de Openstax, Chemistry 2e, Section 10.3: Phase Transitions.

Tags

Clausius Clapeyron EquationVapor PressureTemperature DependenceExponential CurveNatural LogStraight LineIdeal Gas ConstantMolar Heat Of VaporizationEquilibrium Vapor PressuresExperimental MeasurementsReciprocal TemperatureEthanol Vapor PressureSlope Of The LineJoules Per MoleTwo point Form

Do Capítulo 11:

article

Now Playing

11.9 : Equação de Clausius-Clapeyron

Líquidos, Sólidos e Forças Intermoleculares

54.5K Visualizações

article

11.1 : Comparação Molecular de Gases, Líquidos, e Sólidos

Líquidos, Sólidos e Forças Intermoleculares

39.6K Visualizações

article

11.2 : Forças Intermoleculares vs Intramoleculares

Líquidos, Sólidos e Forças Intermoleculares

83.5K Visualizações

article

11.3 : Forças Intermoleculares

Líquidos, Sólidos e Forças Intermoleculares

54.8K Visualizações

article

11.4 : Comparação de Forças Intermoleculares: Ponto de Fusão, Ponto de Ebulição e Miscibilidade

Líquidos, Sólidos e Forças Intermoleculares

43.2K Visualizações

article

11.5 : Tensão Superficial, Ação Capilar e Viscosidade

Líquidos, Sólidos e Forças Intermoleculares

27.1K Visualizações

article

11.6 : Transições de Fase

Líquidos, Sólidos e Forças Intermoleculares

18.4K Visualizações

article

11.7 : Transições de Fase: Vaporização e Condensação

Líquidos, Sólidos e Forças Intermoleculares

16.7K Visualizações

article

11.8 : Pressão de Vapor

Líquidos, Sólidos e Forças Intermoleculares

33.6K Visualizações

article

11.10 : Transições de Fase: Fusão e Solidificação

Líquidos, Sólidos e Forças Intermoleculares

12.1K Visualizações

article

11.11 : Transições de Fase: Sublimação e Deposição

Líquidos, Sólidos e Forças Intermoleculares

16.4K Visualizações

article

11.12 : Curvas de Aquecimento e Resfriamento

Líquidos, Sólidos e Forças Intermoleculares

21.7K Visualizações

article

11.13 : Diagramas de Fase

Líquidos, Sólidos e Forças Intermoleculares

38.0K Visualizações

article

11.14 : Estruturas de Sólidos

Líquidos, Sólidos e Forças Intermoleculares

13.3K Visualizações

article

11.15 : Sólidos Moleculares e Iônicos

Líquidos, Sólidos e Forças Intermoleculares

16.3K Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados