JoVE Logo

Zaloguj się

3.12 : Stability of Substituted Cyclohexanes

This lesson discusses the stability of substituted cyclohexanes with a focus on energies of various conformers and the effect of 1,3-diaxial interactions.

The two chair conformations of cyclohexanes undergo rapid interconversion at room temperature. Both forms have identical energies and stabilities, each comprising equal amounts of the equilibrium mixture. Replacing a hydrogen atom with a functional group makes the two conformations energetically non-equivalent.

For example, in methylcyclohexane, the CH3 group occupies an axial position in one chair conformation and an equatorial position in another. This leads to an increase in energy of the axial conformation to approximately 7.6 kJ mol−1, making the equatorial conformation more stable with an abundance of 95%.

The reason for such variations in energy and stability is that the methyl hydrogens experience repulsive dispersion interactions with the two parallel and closely positioned axial hydrogens on the same side of the ring. Since the steric strain originates between groups on C1 and C3 or C5, it is called a 1,3-diaxial interaction. These interactions, when shown with the Newman projection, exhibit a gauche relationship. However, if the methyl group is positioned equatorially, it is placed anti to C3 and C5, minimizing the steric repulsion.

As the size of a functional group increases, 1,3-diaxial interactions become more pronounced, increasing the energy difference between the two conformations.

Tagi

Substituted CyclohexanesStabilityEnergiesConformers13 diaxial InteractionsChair ConformationsEquilibrium MixtureFunctional GroupMethylcyclohexaneAxial PositionEquatorial PositionEnergy IncreaseStability IncreaseAbundanceRepulsive Dispersion InteractionsSteric Strain13 diaxial InteractionNewman ProjectionGauche RelationshipSteric Repulsion

Z rozdziału 3:

article

Now Playing

3.12 : Stability of Substituted Cyclohexanes

Alkanes and Cycloalkanes

12.2K Wyświetleń

article

3.1 : Struktura alkanów

Alkanes and Cycloalkanes

26.7K Wyświetleń

article

3.2 : Konstytucyjne izomery alkanów

Alkanes and Cycloalkanes

17.5K Wyświetleń

article

3.3 : Nazewnictwo alkanów

Alkanes and Cycloalkanes

21.2K Wyświetleń

article

3.4 : Właściwości fizyczne alkanów

Alkanes and Cycloalkanes

10.6K Wyświetleń

article

3.5 : Projekcje Newmana

Alkanes and Cycloalkanes

16.2K Wyświetleń

article

3.6 : Konformacje etanu i propanu

Alkanes and Cycloalkanes

13.6K Wyświetleń

article

3.7 : Konformacje butanu

Alkanes and Cycloalkanes

13.8K Wyświetleń

article

3.8 : Cykloalkany

Alkanes and Cycloalkanes

11.9K Wyświetleń

article

3.9 : Konformacje cykloalkanów

Alkanes and Cycloalkanes

11.4K Wyświetleń

article

3.10 : Konformacje cykloheksanu

Alkanes and Cycloalkanes

12.0K Wyświetleń

article

3.11 : Budowa krzesła cykloheksanu

Alkanes and Cycloalkanes

14.2K Wyświetleń

article

3.13 : Dipodstawione cykloheksany: izomeria cis-trans

Alkanes and Cycloalkanes

11.7K Wyświetleń

article

3.14 : Energia spalania: miara stabilności alkanów i cykloalkanów

Alkanes and Cycloalkanes

6.2K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone