JoVE Logo

S'identifier

3.12 : Stability of Substituted Cyclohexanes

This lesson discusses the stability of substituted cyclohexanes with a focus on energies of various conformers and the effect of 1,3-diaxial interactions.

The two chair conformations of cyclohexanes undergo rapid interconversion at room temperature. Both forms have identical energies and stabilities, each comprising equal amounts of the equilibrium mixture. Replacing a hydrogen atom with a functional group makes the two conformations energetically non-equivalent.

For example, in methylcyclohexane, the CH3 group occupies an axial position in one chair conformation and an equatorial position in another. This leads to an increase in energy of the axial conformation to approximately 7.6 kJ mol−1, making the equatorial conformation more stable with an abundance of 95%.

The reason for such variations in energy and stability is that the methyl hydrogens experience repulsive dispersion interactions with the two parallel and closely positioned axial hydrogens on the same side of the ring. Since the steric strain originates between groups on C1 and C3 or C5, it is called a 1,3-diaxial interaction. These interactions, when shown with the Newman projection, exhibit a gauche relationship. However, if the methyl group is positioned equatorially, it is placed anti to C3 and C5, minimizing the steric repulsion.

As the size of a functional group increases, 1,3-diaxial interactions become more pronounced, increasing the energy difference between the two conformations.

Tags

Substituted CyclohexanesStabilityEnergiesConformers13 diaxial InteractionsChair ConformationsEquilibrium MixtureFunctional GroupMethylcyclohexaneAxial PositionEquatorial PositionEnergy IncreaseStability IncreaseAbundanceRepulsive Dispersion InteractionsSteric Strain13 diaxial InteractionNewman ProjectionGauche RelationshipSteric Repulsion

Du chapitre 3:

article

Now Playing

3.12 : Stability of Substituted Cyclohexanes

Alcanes et cycloalcanes

12.2K Vues

article

3.1 : Structure des alcanes

Alcanes et cycloalcanes

26.7K Vues

article

3.2 : Isomères constitutionnels des alcanes

Alcanes et cycloalcanes

17.5K Vues

article

3.3 : Nomenclature des alcanes

Alcanes et cycloalcanes

21.2K Vues

article

3.4 : Propriétés physiques des alcanes

Alcanes et cycloalcanes

10.6K Vues

article

3.5 : Projections de Newman

Alcanes et cycloalcanes

16.2K Vues

article

3.6 : Conformations de l'éthane et du propane

Alcanes et cycloalcanes

13.6K Vues

article

3.7 : Conformations du butane

Alcanes et cycloalcanes

13.8K Vues

article

3.8 : Cycloalcanes

Alcanes et cycloalcanes

11.9K Vues

article

3.9 : Conformations des cycloalcanes

Alcanes et cycloalcanes

11.4K Vues

article

3.10 : Conformations du cyclohexane

Alcanes et cycloalcanes

12.0K Vues

article

3.11 : Conformation chaise du cyclohexane

Alcanes et cycloalcanes

14.2K Vues

article

3.13 : Cyclohexanes disubstitués : isomérie cis-trans

Alcanes et cycloalcanes

11.7K Vues

article

3.14 : Énergie de combustion : mesure de la stabilité des alcanes et des cycloalcanes

Alcanes et cycloalcanes

6.2K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.