JoVE Logo

Anmelden

3.12 : Stability of Substituted Cyclohexanes

This lesson discusses the stability of substituted cyclohexanes with a focus on energies of various conformers and the effect of 1,3-diaxial interactions.

The two chair conformations of cyclohexanes undergo rapid interconversion at room temperature. Both forms have identical energies and stabilities, each comprising equal amounts of the equilibrium mixture. Replacing a hydrogen atom with a functional group makes the two conformations energetically non-equivalent.

For example, in methylcyclohexane, the CH3 group occupies an axial position in one chair conformation and an equatorial position in another. This leads to an increase in energy of the axial conformation to approximately 7.6 kJ mol−1, making the equatorial conformation more stable with an abundance of 95%.

The reason for such variations in energy and stability is that the methyl hydrogens experience repulsive dispersion interactions with the two parallel and closely positioned axial hydrogens on the same side of the ring. Since the steric strain originates between groups on C1 and C3 or C5, it is called a 1,3-diaxial interaction. These interactions, when shown with the Newman projection, exhibit a gauche relationship. However, if the methyl group is positioned equatorially, it is placed anti to C3 and C5, minimizing the steric repulsion.

As the size of a functional group increases, 1,3-diaxial interactions become more pronounced, increasing the energy difference between the two conformations.

Tags

Substituted CyclohexanesStabilityEnergiesConformers13 diaxial InteractionsChair ConformationsEquilibrium MixtureFunctional GroupMethylcyclohexaneAxial PositionEquatorial PositionEnergy IncreaseStability IncreaseAbundanceRepulsive Dispersion InteractionsSteric Strain13 diaxial InteractionNewman ProjectionGauche RelationshipSteric Repulsion

Aus Kapitel 3:

article

Now Playing

3.12 : Stability of Substituted Cyclohexanes

Alkane und Cycloalkane

12.2K Ansichten

article

3.1 : Struktur der Alkane

Alkane und Cycloalkane

26.7K Ansichten

article

3.2 : Konstitutionelle Isomere von Alkanen

Alkane und Cycloalkane

17.5K Ansichten

article

3.3 : Nomenklatur der Alkane

Alkane und Cycloalkane

21.2K Ansichten

article

3.4 : Physikalische Eigenschaften von Alkanen

Alkane und Cycloalkane

10.6K Ansichten

article

3.5 : Newman-Projektionen

Alkane und Cycloalkane

16.2K Ansichten

article

3.6 : Konformationen von Ethan und Propan

Alkane und Cycloalkane

13.6K Ansichten

article

3.7 : Konformationen von Butan

Alkane und Cycloalkane

13.8K Ansichten

article

3.8 : Cycloalkane

Alkane und Cycloalkane

11.9K Ansichten

article

3.9 : Konformationen von Cycloalkanen

Alkane und Cycloalkane

11.4K Ansichten

article

3.10 : Konformationen von Cyclohexan

Alkane und Cycloalkane

12.0K Ansichten

article

3.11 : Stuhlkonformation von Cyclohexan

Alkane und Cycloalkane

14.2K Ansichten

article

3.13 : Disubstituierte Cyclohexane: cis-trans-Isomerie

Alkane und Cycloalkane

11.7K Ansichten

article

3.14 : Verbrennungsenergie: Ein Maß für die Stabilität von Alkanen und Cycloalkanen

Alkane und Cycloalkane

6.2K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten