Zaloguj się

A nucleophile can react with an alkyl halide to give the substitution product by displacing the halogen. Or it can function as a base to give the elimination product by deprotonation of the neighboring carbon to form an alkene. In an elimination reaction, the substrate loses two groups from adjacent carbons forming at least one π bond. The carbon attached to the halogen is called the α carbon, while the adjacent carbon is called the β carbon; hence, these reactions are called β elimination or 1,2-elimination reactions.

The nucleophile acts as a Lewis base by donating a pair of electrons to a proton. Common bases used to promote elimination reactions include hydroxides (OH), alkoxides (OR), and amides (NH2). In the presence of a strong base, the alkyl halide loses a proton from the β carbon and the halogen from the α carbon, enabling the formation of a π bond between the two carbon atoms.

Mechanism of Elimination Reactions

Elimination reactions commonly occur via the E2 or E1 mechanisms. The E2 mechanism takes place in a single concerted step: the abstraction of the β hydrogen by the base is accompanied by the cleavage of the α-carbon–halogen bond. Thus, the E2 reaction proceeds via one transition state.

The E1 reaction occurs in two steps. First, the alkyl halide undergoes ionization forming a carbocation intermediate and a halide ion. Next, the deprotonation of the carbocation by the base results in a π bond. Thus, in E1 reactions, the carbocation intermediate is formed via one transition state, and a second transition state exists for the deprotonation step.

Regio- and stereoselectivity

When the alkyl halide has two different β carbons, the elimination reaction can produce more than one alkene. In such cases, the more substituted (and most stable) alkene is generally observed, known as the Zaitsev product. However, in some cases, the less substituted alkene (Hofmann product) is obtained. The choice of base plays an important role in deciding which regioselective product is formed. Elimination reactions also favor the formation of trans-alkenes over the cis-isomers, making them stereoselective.

Tagi
Elimination ReactionsNucleophileAlkyl HalideSubstitution ProductElimination ProductDeprotonationAlkeneLewis BaseE2 MechanismE1 MechanismTransition StateCarbocation

Z rozdziału 6:

article

Now Playing

6.15 : Elimination Reactions

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

12.4K Wyświetleń

article

6.1 : Halogenki alkilowe

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

14.8K Wyświetleń

article

6.2 : Reakcje substytucji nukleofilowej

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

14.9K Wyświetleń

article

6.3 : Nukleofile

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

12.4K Wyświetleń

article

6.4 : Elektrofile

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

9.8K Wyświetleń

article

6.5 : Opuszczanie grup

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

7.1K Wyświetleń

article

6.6 : Karbokationy

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

10.5K Wyświetleń

article

6.7 : sn2 Reakcja: Kinetyka

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

7.7K Wyświetleń

article

6.8 : sn2 Reakcja: Mechanizm

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

13.2K Wyświetleń

article

6.9 : SN2 Reakcja: stan przejściowy

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

9.0K Wyświetleń

article

6.10 : SN2 Reakcja: Stereochemia

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

8.8K Wyświetleń

article

6.11 : SN1 Reakcja: Kinetyka

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

7.4K Wyświetleń

article

6.12 : sn1 Reakcja: Mechanizm

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

11.0K Wyświetleń

article

6.13 : SN1 Reakcja: Stereochemia

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

8.0K Wyświetleń

article

6.14 : Procesy przewidywania: SN1 vs. SN2

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

13.0K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone