로그인

A nucleophile can react with an alkyl halide to give the substitution product by displacing the halogen. Or it can function as a base to give the elimination product by deprotonation of the neighboring carbon to form an alkene. In an elimination reaction, the substrate loses two groups from adjacent carbons forming at least one π bond. The carbon attached to the halogen is called the α carbon, while the adjacent carbon is called the β carbon; hence, these reactions are called β elimination or 1,2-elimination reactions.

The nucleophile acts as a Lewis base by donating a pair of electrons to a proton. Common bases used to promote elimination reactions include hydroxides (OH), alkoxides (OR), and amides (NH2). In the presence of a strong base, the alkyl halide loses a proton from the β carbon and the halogen from the α carbon, enabling the formation of a π bond between the two carbon atoms.

Mechanism of Elimination Reactions

Elimination reactions commonly occur via the E2 or E1 mechanisms. The E2 mechanism takes place in a single concerted step: the abstraction of the β hydrogen by the base is accompanied by the cleavage of the α-carbon–halogen bond. Thus, the E2 reaction proceeds via one transition state.

The E1 reaction occurs in two steps. First, the alkyl halide undergoes ionization forming a carbocation intermediate and a halide ion. Next, the deprotonation of the carbocation by the base results in a π bond. Thus, in E1 reactions, the carbocation intermediate is formed via one transition state, and a second transition state exists for the deprotonation step.

Regio- and stereoselectivity

When the alkyl halide has two different β carbons, the elimination reaction can produce more than one alkene. In such cases, the more substituted (and most stable) alkene is generally observed, known as the Zaitsev product. However, in some cases, the less substituted alkene (Hofmann product) is obtained. The choice of base plays an important role in deciding which regioselective product is formed. Elimination reactions also favor the formation of trans-alkenes over the cis-isomers, making them stereoselective.

Tags
Elimination ReactionsNucleophileAlkyl HalideSubstitution ProductElimination ProductDeprotonationAlkeneLewis BaseE2 MechanismE1 MechanismTransition StateCarbocation

장에서 6:

article

Now Playing

6.15 : Elimination Reactions

친핵성 치환과 알킬 할라이드 반응 제거

12.4K Views

article

6.1 : 알킬 할리데스

친핵성 치환과 알킬 할라이드 반응 제거

14.8K Views

article

6.2 : 뉴클레오필성 대체 반응

친핵성 치환과 알킬 할라이드 반응 제거

14.9K Views

article

6.3 : 뉴클레오필

친핵성 치환과 알킬 할라이드 반응 제거

12.4K Views

article

6.4 : 전기 애호가

친핵성 치환과 알킬 할라이드 반응 제거

9.8K Views

article

6.5 : 그룹 탈퇴

친핵성 치환과 알킬 할라이드 반응 제거

7.1K Views

article

6.6 : 카보케이션

친핵성 치환과 알킬 할라이드 반응 제거

10.5K Views

article

6.7 : SN2 반응: 운동학

친핵성 치환과 알킬 할라이드 반응 제거

7.7K Views

article

6.8 : SN2 반응: 메커니즘

친핵성 치환과 알킬 할라이드 반응 제거

13.2K Views

article

6.9 : SN2 반응: 전환 상태

친핵성 치환과 알킬 할라이드 반응 제거

9.0K Views

article

6.10 : SN2 반응: 스테레오케미스케

친핵성 치환과 알킬 할라이드 반응 제거

8.8K Views

article

6.11 : SN1 반응: 운동학

친핵성 치환과 알킬 할라이드 반응 제거

7.4K Views

article

6.12 : SN1 반응: 메커니즘

친핵성 치환과 알킬 할라이드 반응 제거

11.0K Views

article

6.13 : SN1 반응: 스테레오케미스케

친핵성 치환과 알킬 할라이드 반응 제거

8.0K Views

article

6.14 : 제품 예측: SN1 vs. SN2

친핵성 치환과 알킬 할라이드 반응 제거

13.0K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유