JoVE Logo

Zaloguj się

11.10 : Sharpless Epoxidation

The conversion of allylic alcohols into epoxides using the chiral catalyst was discovered by K. Barry Sharpless and is known as Sharpless epoxidation. The use of a chiral catalyst enables the formation of one enantiomer of the product in excess. This chiral catalyst is mainly a chiral complex of titanium tetraisopropoxide and tartrate ester (specific stereoisomer). The stereoisomer used in the chiral catalyst dictates the formation of the enantiomer of the product. In other words, the use of L-(+)-diethyl tartrate leads to enantiomers having the epoxide ring below the plane, while with D-(−)-diethyl tartrate, to enantiomers with the epoxide ring above theplane. The high enantioselectivity of the reaction can be explained by considering the activation energies required for the reaction to proceed in the forward direction in the presence of the chiral catalyst. As shown in Figure 1, compared to the uncatalyzed reaction (blue curve), the activation energy of the reaction decreases dramatically with the addition of the chiral catalyst (red and green curves). Moreover, the activation energy for the formation of one enantiomer (red curve) is lowered more than that of another enantiomer (green curve), leading to the formation of one enantiomer in excess. Hence, Sharpless epoxidation reaction can be utilized for the synthesis of desired enantiomers of the product.

Figure1

The stereochemistry of the product formed when any allylic alcohol is subjected to Sharpless epoxidation can be predicted by simply orienting the allylic alcohol molecule in a plane with the hydroxyl groups pointing towards the lower right corner, as shown in Figure 2. On this planar structure, D-(−)-diethyl tartrate delivers the oxygen from the top face of the alkene, making the epoxide formation feasible from above the plane, while L-(+)-diethyl tartrate delivers the oxygen from the bottom face of the alkene, thereby installing the epoxide ring from below the plane.

Figure2

Tagi

Sharpless EpoxidationAllylic AlcoholsEpoxidesChiral CatalystTitanium TetraisopropoxideTartrate EsterEnantioselectivityActivation EnergyStereochemistry

Z rozdziału 11:

article

Now Playing

11.10 : Sharpless Epoxidation

Ethers, Epoxides, Sulfides

3.8K Wyświetleń

article

11.1 : Struktura i nomenklatura eterów

Ethers, Epoxides, Sulfides

11.1K Wyświetleń

article

11.2 : Właściwości fizyczne eterów

Ethers, Epoxides, Sulfides

6.8K Wyświetleń

article

11.3 : Etery z alkoholi: odwadnianie alkoholu i synteza eteru Williamsona

Ethers, Epoxides, Sulfides

10.1K Wyświetleń

article

11.4 : Etery z alkenów: dodatek alkoholu i alkoksymerkuracja-odmerkurowanie

Ethers, Epoxides, Sulfides

7.7K Wyświetleń

article

11.5 : Etery do halogenków alkilowych: rozszczepienie kwasowe

Ethers, Epoxides, Sulfides

5.6K Wyświetleń

article

11.6 : Autooksydacja eterów do nadtlenków i wodoronadtlenków

Ethers, Epoxides, Sulfides

7.3K Wyświetleń

article

11.7 : Etery koronowe

Ethers, Epoxides, Sulfides

5.1K Wyświetleń

article

11.8 : Struktura i nazewnictwo epoksydów

Ethers, Epoxides, Sulfides

6.3K Wyświetleń

article

11.9 : Przygotowanie epoksydów

Ethers, Epoxides, Sulfides

7.4K Wyświetleń

article

11.11 : Katalizowane kwasem otwieranie pierścieni epoksydów

Ethers, Epoxides, Sulfides

7.0K Wyświetleń

article

11.12 : Katalizowane zasadą otwieranie pierścieni epoksydów

Ethers, Epoxides, Sulfides

8.2K Wyświetleń

article

11.13 : Struktura i nomenklatura tioli i siarczków

Ethers, Epoxides, Sulfides

4.5K Wyświetleń

article

11.14 : Przygotowanie i reakcje tioli

Ethers, Epoxides, Sulfides

5.9K Wyświetleń

article

11.15 : Otrzymywanie i reakcje siarczków

Ethers, Epoxides, Sulfides

4.7K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone