S'identifier

The conversion of allylic alcohols into epoxides using the chiral catalyst was discovered by K. Barry Sharpless and is known as Sharpless epoxidation. The use of a chiral catalyst enables the formation of one enantiomer of the product in excess. This chiral catalyst is mainly a chiral complex of titanium tetraisopropoxide and tartrate ester (specific stereoisomer). The stereoisomer used in the chiral catalyst dictates the formation of the enantiomer of the product. In other words, the use of L-(+)-diethyl tartrate leads to enantiomers having the epoxide ring below the plane, while with D-(−)-diethyl tartrate, to enantiomers with the epoxide ring above theplane. The high enantioselectivity of the reaction can be explained by considering the activation energies required for the reaction to proceed in the forward direction in the presence of the chiral catalyst. As shown in Figure 1, compared to the uncatalyzed reaction (blue curve), the activation energy of the reaction decreases dramatically with the addition of the chiral catalyst (red and green curves). Moreover, the activation energy for the formation of one enantiomer (red curve) is lowered more than that of another enantiomer (green curve), leading to the formation of one enantiomer in excess. Hence, Sharpless epoxidation reaction can be utilized for the synthesis of desired enantiomers of the product.

Figure1

The stereochemistry of the product formed when any allylic alcohol is subjected to Sharpless epoxidation can be predicted by simply orienting the allylic alcohol molecule in a plane with the hydroxyl groups pointing towards the lower right corner, as shown in Figure 2. On this planar structure, D-(−)-diethyl tartrate delivers the oxygen from the top face of the alkene, making the epoxide formation feasible from above the plane, while L-(+)-diethyl tartrate delivers the oxygen from the bottom face of the alkene, thereby installing the epoxide ring from below the plane.

Figure2

Tags
Sharpless EpoxidationAllylic AlcoholsEpoxidesChiral CatalystTitanium TetraisopropoxideTartrate EsterEnantioselectivityActivation EnergyStereochemistry

Du chapitre 11:

article

Now Playing

11.10 : Sharpless Epoxidation

Ethers, Epoxydes, sulfures

3.7K Vues

article

11.1 : Structure et nomenclature des éthers

Ethers, Epoxydes, sulfures

10.7K Vues

article

11.2 : Propriétés physiques des éthers

Ethers, Epoxydes, sulfures

6.7K Vues

article

11.3 : Déshydratation d'un alcool et synthèse de Williamson : formation d'un éther

Ethers, Epoxydes, sulfures

9.9K Vues

article

11.4 : Un éther à partir d'un alcène : addition d'alcool et démercuration-oxymercuration

Ethers, Epoxydes, sulfures

7.6K Vues

article

11.5 : Clivage acide d'un éther : obtention d'un halogénure d'alkyle

Ethers, Epoxydes, sulfures

5.4K Vues

article

11.6 : Auto-oxydation des éthers en peroxydes et hydroperoxydes

Ethers, Epoxydes, sulfures

7.1K Vues

article

11.7 : Éthers couronnes

Ethers, Epoxydes, sulfures

5.0K Vues

article

11.8 : Structure et nomenclature des époxydes

Ethers, Epoxydes, sulfures

6.2K Vues

article

11.9 : Préparation d'époxydes

Ethers, Epoxydes, sulfures

7.2K Vues

article

11.11 : Ouverture de l'anneau d'époxyde initiée par un acide

Ethers, Epoxydes, sulfures

6.9K Vues

article

11.12 : Ouverture de l'anneau d'époxyde initiée par une base

Ethers, Epoxydes, sulfures

8.1K Vues

article

11.13 : Structure et nomenclature des thiols et des sulfures

Ethers, Epoxydes, sulfures

4.5K Vues

article

11.14 : Préparation et réactions des thiols

Ethers, Epoxydes, sulfures

5.8K Vues

article

11.15 : Préparation et réactions des sulfures

Ethers, Epoxydes, sulfures

4.6K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.