Zaloguj się

Resonance is produced depending on the boundary conditions imposed on a wave. Resonance can be produced in a string under tension with symmetrical boundary conditions (i.e., has a node at each end). A node is defined as a fixed point where the string does not move. The symmetrical boundary conditions result in some frequencies resonating and producing standing waves, while other frequencies interfere destructively. Sound waves can resonate in a hollow tube, and the frequencies of the sound waves that resonate depend on the boundary conditions.

For instance, consider a tube that is closed at one end and open at the other. If a vibrating tuning fork is placed near the open end of the tube, an incident sound wave travels through the tube and reflects off the closed end. The reflected sound has the same frequency and wavelength as the incident sound wave but travels in the opposite direction. At the closed end of the tube, the air molecules have very little freedom to oscillate, and a node arises. At the open end, the molecules are free to move, and at the right frequency, an antinode occurs.

Unlike the symmetrical boundary conditions for standing waves on a string, the boundary conditions for a tube open at one end and closed at the other end are anti-symmetrical; there is a node at the closed end and an antinode at the open end. If the tuning fork has the right frequency, the air column in the tube resonates loudly. Thus, it vibrates very little at most frequencies, suggesting that the air column has only specific natural frequencies.

In another instance, if the standing waves travel through a tube that is open at both ends, the boundary conditions are symmetrical—an antinode at each end. The resonance in tubes open at both ends can be analyzed similarly to those for tubes closed at one end. The air columns in tubes open at both ends have maximum air displacements at both ends.

This text is adapted from Openstax, University Physics Volume 1, Section 17.4: Normal Modes of a Standing Sound Wave.

Tagi

ResonanceSound WavesBoundary ConditionsStanding WavesNodeAntinodeHollow TubeVibrating Tuning ForkFrequenciesAir ColumnNatural FrequenciesSymmetrical ConditionsAnti symmetrical Conditions

Z rozdziału 17:

article

Now Playing

17.12 : Sound Waves: Resonance

Sound

2.5K Wyświetleń

article

17.1 : Fale dźwiękowe

Sound

7.3K Wyświetleń

article

17.2 : Dźwięk jako fale ciśnienia

Sound

1.2K Wyświetleń

article

17.3 : Percepcja fal dźwiękowych

Sound

4.4K Wyświetleń

article

17.4 : Prędkość dźwięku w ciałach stałych i cieczach

Sound

2.8K Wyświetleń

article

17.5 : Prędkość dźwięku w gazach

Sound

2.9K Wyświetleń

article

17.6 : Wyznaczanie prędkości dźwięku w cieczy

Sound

443 Wyświetleń

article

17.7 : Natężenie dźwięku

Sound

4.0K Wyświetleń

article

17.8 : Poziom natężenia dźwięku

Sound

4.1K Wyświetleń

article

17.9 : Natężenie i ciśnienie fal dźwiękowych

Sound

997 Wyświetleń

article

17.10 : Fale dźwiękowe: zakłócenia

Sound

3.6K Wyświetleń

article

17.11 : Przenikanie: Długości ścieżek

Sound

1.2K Wyświetleń

article

17.13 : Bije

Sound

467 Wyświetleń

article

17.14 : Efekt Dopplera - I

Sound

3.5K Wyświetleń

article

17.15 : Efekt Dopplera - II

Sound

3.3K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone