Accedi

Resonance is produced depending on the boundary conditions imposed on a wave. Resonance can be produced in a string under tension with symmetrical boundary conditions (i.e., has a node at each end). A node is defined as a fixed point where the string does not move. The symmetrical boundary conditions result in some frequencies resonating and producing standing waves, while other frequencies interfere destructively. Sound waves can resonate in a hollow tube, and the frequencies of the sound waves that resonate depend on the boundary conditions.

For instance, consider a tube that is closed at one end and open at the other. If a vibrating tuning fork is placed near the open end of the tube, an incident sound wave travels through the tube and reflects off the closed end. The reflected sound has the same frequency and wavelength as the incident sound wave but travels in the opposite direction. At the closed end of the tube, the air molecules have very little freedom to oscillate, and a node arises. At the open end, the molecules are free to move, and at the right frequency, an antinode occurs.

Unlike the symmetrical boundary conditions for standing waves on a string, the boundary conditions for a tube open at one end and closed at the other end are anti-symmetrical; there is a node at the closed end and an antinode at the open end. If the tuning fork has the right frequency, the air column in the tube resonates loudly. Thus, it vibrates very little at most frequencies, suggesting that the air column has only specific natural frequencies.

In another instance, if the standing waves travel through a tube that is open at both ends, the boundary conditions are symmetrical—an antinode at each end. The resonance in tubes open at both ends can be analyzed similarly to those for tubes closed at one end. The air columns in tubes open at both ends have maximum air displacements at both ends.

This text is adapted from Openstax, University Physics Volume 1, Section 17.4: Normal Modes of a Standing Sound Wave.

Tags

ResonanceSound WavesBoundary ConditionsStanding WavesNodeAntinodeHollow TubeVibrating Tuning ForkFrequenciesAir ColumnNatural FrequenciesSymmetrical ConditionsAnti symmetrical Conditions

Dal capitolo 17:

article

Now Playing

17.12 : Sound Waves: Resonance

Sound

2.5K Visualizzazioni

article

17.1 : Onde sonore

Sound

7.3K Visualizzazioni

article

17.2 : Suono come onde di pressione

Sound

1.2K Visualizzazioni

article

17.3 : Percezione delle onde sonore

Sound

4.4K Visualizzazioni

article

17.4 : Velocità del suono in solidi e liquidi

Sound

2.8K Visualizzazioni

article

17.5 : Velocità del suono nei gas

Sound

2.9K Visualizzazioni

article

17.6 : Ricavare la velocità del suono in un liquido

Sound

443 Visualizzazioni

article

17.7 : Intensità del suono

Sound

4.0K Visualizzazioni

article

17.8 : Livello di intensità sonora

Sound

4.1K Visualizzazioni

article

17.9 : Intensità e pressione delle onde sonore

Sound

997 Visualizzazioni

article

17.10 : Onde sonore: interferenza

Sound

3.6K Visualizzazioni

article

17.11 : Interferenza: lunghezze del percorso

Sound

1.2K Visualizzazioni

article

17.13 : Batte

Sound

467 Visualizzazioni

article

17.14 : Effetto Doppler - I

Sound

3.5K Visualizzazioni

article

17.15 : Effetto Doppler - II

Sound

3.3K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati