Differential-pulse voltammetry (DPV) is a type of voltammetry that involves applying a series of voltage pulses to an electrochemical cell while measuring the resulting current. In DPV, the differential pulse or small potential pulses are superimposed on a linear potential sweep. The magnitude of these pulses is typically small, often in the millivolt range. Each voltage pulse lasts a short duration, usually in the order of a few milliseconds, and is applied at regular intervals along the potential sweep.

The basic principle of DPV is that applying a potential pulse to an electrochemical system generates a faradaic current, which arises from redox reactions occurring at the electrode surface. This faradaic current results from electron transfer between the electrode and the analyte species in the solution. The current is measured before and after each voltage pulse, and the difference between these two current values gives the differential current, which is plotted against the applied potential. The magnitude of this current is proportional to the concentration of the electroactive species present in the solution. DPV offers advantages like excellent resolution and relative inertness to capacitive currents. While the former makes distinguishing between multiple species present in a solution possible, the latter helps obscure the signal in other voltammetry techniques.

Square wave voltammetry applies a combined square wave and staircase potential to a stationary electrode. During the cathodic pulses, the analyte undergoes reduction at the electrode surface, while during the anodic pulses of the waveform, the reduced analyte is reoxidized. The square wave polarogram plots the current difference between two points in the square wave voltammogram. Typically, these points are chosen at the peak of the anodic and cathodic currents. The difference in current between the anodic and cathodic peaks in the square wave polarogram is proportional to the concentration of the analyte.

Z rozdziału 10:

article

Now Playing

10.21 : Voltammetric Techniques: Pulse Voltammetry

Electrochemical Analyses and Redox Titration

81 Wyświetleń

article

10.1 : Elektrochemia: Przegląd

Electrochemical Analyses and Redox Titration

271 Wyświetleń

article

10.2 : Elektrody: Przegląd

Electrochemical Analyses and Redox Titration

187 Wyświetleń

article

10.3 : Metody elektrochemiczne międzyfazowe: przegląd

Electrochemical Analyses and Redox Titration

121 Wyświetleń

article

10.4 : Potencjometria: Przegląd

Electrochemical Analyses and Redox Titration

195 Wyświetleń

article

10.5 : Potencjometria: rodzaje elektrod

Electrochemical Analyses and Redox Titration

221 Wyświetleń

article

10.6 : Potencjometria: Elektrody membranowe

Electrochemical Analyses and Redox Titration

161 Wyświetleń

article

10.7 : Miareczkowanie redoks: Przegląd

Electrochemical Analyses and Redox Titration

124 Wyświetleń

article

10.8 : Miareczkowanie redoks: jodymetria i jodometria

Electrochemical Analyses and Redox Titration

286 Wyświetleń

article

10.9 : Miareczkowanie redoks: inne środki utleniające i redukujące

Electrochemical Analyses and Redox Titration

80 Wyświetleń

article

10.10 : Miareczkowanie potencjometryczne: Przegląd

Electrochemical Analyses and Redox Titration

156 Wyświetleń

article

10.11 : Przewidywanie punktu końcowego: Gran Plot

Electrochemical Analyses and Redox Titration

82 Wyświetleń

article

10.12 : Analiza elektrograwimetryczna: Przegląd

Electrochemical Analyses and Redox Titration

84 Wyświetleń

article

10.13 : Kulometria: Przegląd

Electrochemical Analyses and Redox Titration

78 Wyświetleń

article

10.14 : Kulometria o kontrolowanym potencjale: metody elektrolityczne

Electrochemical Analyses and Redox Titration

62 Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone