Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Considering saliva sampling for future clinical application, a lollipop-like ultrafiltration (LLUF) probe was fabricated to fit in the human oral cavity. Direct analysis of undigested saliva by NanoLC-LTQ mass spectrometry demonstrated the ability of LLUF probes to remove large proteins and high abundance proteins, and make low-abundant peptides more detectable.
Although human saliva proteome and peptidome have been revealed 1-2 they were majorly identified from tryptic digests of saliva proteins. Identification of indigenous peptidome of human saliva without prior digestion with exogenous enzymes becomes imperative, since native peptides in human saliva provide potential values for diagnosing disease, predicting disease progression, and monitoring therapeutic efficacy. Appropriate sampling is a critical step for enhancement of identification of human indigenous saliva peptidome. Traditional methods of sampling human saliva involving centrifugation to remove debris 3-4 may be too time-consuming to be applicable for clinical use. Furthermore, debris removal by centrifugation may be unable to clean most of the infected pathogens and remove the high abundance proteins that often hinder the identification of low abundance peptidome.
Conventional proteomic approaches that primarily utilize two-dimensional gel electrophoresis (2-DE) gels in conjugation with in-gel digestion are capable of identifying many saliva proteins 5-6. However, this approach is generally not sufficiently sensitive to detect low abundance peptides/proteins. Liquid chromatography-Mass spectrometry (LC-MS) based proteomics is an alternative that can identify proteins without prior 2-DE separation. Although this approach provides higher sensitivity, it generally needs prior sample pre-fractionation 7 and pre-digestion with trypsin, which makes it difficult for clinical use.
To circumvent the hindrance in mass spectrometry due to sample preparation, we have developed a technique called capillary ultrafiltration (CUF) probes 8-11. Data from our laboratory demonstrated that the CUF probes are capable of capturing proteins in vivo from various microenvironments in animals in a dynamic and minimally invasive manner 8-11. No centrifugation is needed since a negative pressure is created by simply syringe withdrawing during sample collection. The CUF probes combined with LC-MS have successfully identified tryptic-digested proteins 8-11. In this study, we upgraded the ultrafiltration sampling technique by creating a lollipop-like ultrafiltration (LLUF) probe that can easily fit in the human oral cavity. The direct analysis by LC-MS without trypsin digestion showed that human saliva indigenously contains many peptide fragments derived from various proteins. Sampling saliva with LLUF probes avoided centrifugation but effectively removed many larger and high abundance proteins. Our mass spectrometric results illustrated that many low abundance peptides became detectable after filtering out larger proteins with LLUF probes. Detection of low abundance saliva peptides was independent of multiple-step sample separation with chromatography. For clinical application, the LLUF probes incorporated with LC-MS could potentially be used in the future to monitor disease progression from saliva.
1. Creation of LLUF Probes
2. Saliva Collection
3. NanoLC-LTQ MS Analysis
4. Data Analysis and Protein Database Searching
5. Removal of Oral Bacteria with LLUF Probes
6. Representative Results
1. Fabrication of LLUF probes and sampling saliva in an imitated oral environment
If sampling saliva can be performed as sucking a lollipop, the procedure will avoid the degradation of spitted saliva in collection devices 13-14. Importantly, it will also become possible to monitor patients dynamically and locally from oral cavities. In addition, if sample preparation using saliva could be simplified, clinicians would easily facilitate the procedure to expedite their decision on the next clinical operation. Mass spectrometry is one of the most sensitive techniques to detect and even sequence proteins in a very short period of time. However, complicated procedures for sample preparation have hampered using this technique in clinic. Furthermore, it is known that higher abundance proteins or proteins with high molecular weights in clinical samples (e.g. amylase in saliva) mask low abundance proteins in mass spectrometric analysis 15-16. To overcome the hurdles mentioned above, we developed a lollipop-like ultrafiltration device named LLUF probes (Figure 1). A negatively charged polyethersulfone membrane with a MWCO at 30 kDa (Figure 1A, a) was glued to a polypropylene paddle (Figure 1A, b). It was positioned in front of the LLUF probe with the intention of filtering out larger proteins in saliva. To mimic the human oral environment (Figure 1A, g), a sponge (Figure 1A, e) was soaked into saliva in a culture dish (Figure 1A, f). After fully withdrawing the syringe (Figure 1A, d), filtered saliva started moving along a connected tube (Figure 1A, c) and was collected.
2. Identification of indigenous saliva peptidome by NanoLC-LTQ MS
Comparing LC chromatograms, we found distinct chromatograms of saliva before and after LLUF sampling (Figure 2), indicating that there are different protein compositions in saliva after LLUF sampling. To determine the protein compositions, we employed NanoLC-LTQ mass spectrometry that is known to be able to promptly sequence peptides from a multiple protein mixture. More importantly, to simplify sample preparation for clinical purposes, whole saliva without chemical or enzymatic digestion was applied for NanoLC-LTQ MS analysis. Unexpectedly, 131 peptides were identified in undigested saliva (Supplemental Table 1). These peptides are fragments derived from various proline rich proteins, actin, alpha amylase, alpha 1 globin, beta globin, histain 1, keratin 1, mucin 7, polymeric immunoglobulin receptor, satherin, and S100A9. Twenty-six unique peptides were identified in saliva after filtering with LLUF probes (Supplemental Table 2). These peptides are fragments mainly derived from various proline-rich proteins. Peptides derived from proteins such as the polymeric immunoglobulin receptor (83.24 kDa) and alpha amylase, were undetectable, demonstrating the capability of LLUF probes in removal of larger and abundant proteins. A MS/MS spectrum of the PFIAIHAEAESKL peptide corresponding to an internal peptide of alpha-amylase is illustrated in Figure 3A. Most intriguingly, after removing larger proteins, 18 of 26 sequenced peptides became detectable in the LLUF probe-sampled saliva (Table 1). These 18 peptides were derived from proline-rich proteins or hypothetical proteins that ended with a proline (P)- glutamine (Q) (-PQ), -SR, -SP or -PP C-terminus. Figure 3B showed a MS/MS spectrum of the PQGPPQQGGHPRPP peptide that was detected in the LLUF probe-sampled saliva. The peptide could be derived from proline-rich protein HaeIII subfamily 1 and 2 (Table 1).
Figure 1. Compositions of LLUF probes and sampling of whole saliva from mimic human oral cavity. Panel A: (a) a semi-permeable polyethersulfone with a MWCO of 30 kDa; (b) a polypropylene paddle; (c) a teflon fluorinated ethylene propylene tube; (d) a 20 ml syringe. Panel B: a sponge (e) (a mimicked tongue) was soaked into a culture dish (f) containing human saliva to create an artificial human oral cavity (g). The resulting negative pressure created by fully withdrawing a syringe drives the collected fluid to move along a connected tube (arrow) and towards a created space (arrowhead) within syringe. Bar: 2.0 cm.
Figure 2. Differential LC/MS/MS chromatograms of saliva before and after LLUF sampling. Proteins (1.0 μg/μl) in human whole saliva were filtered without or with a LLUF probe. Proteins without tryptic digestion were directly subjected to NanoLC- LTQ MS that was conjugated with an Eksigent Nano LC system as described in Material and Methods. The base-peak chromatograms (with 44-mim retention times) of saliva before (A) and after (B) LLUF sampling were illustrated.
Figure 3. Detection of saliva peptidome by NanoLC- LTQ MS sequencing. Saliva proteins before (A) and after (B) sampling with LLUF probes were analyzed by NanoLC- LTQ MS as described in Experimental Procedures. Saliva peptidome derived from natural human saliva without tryptic digestion were demonstrated in Supplemental Tables 1 and 2. A peptide (PFIAIHAEAESKL) derived from alpha-amylase was exclusively detected in a saliva sample without collection with LLUF probes (A), illustrating that the capability of LLUF probes in removing large proteins. Many peptides with -PQ, -SR, -SP or -PP C-termini were solely in samples after ultrafiltration LLUF probes. One (PQGPPQQGGHPRPP) of peptides derived from various proline rich proteins were shown (B). MS/MS spectra with characteristic "y" and "b" series ions confirmed the identities of both peptides.
Figure 4. Removal of oral bacteria using during LLUF probes. A LLUF probe was constructed as described in Materials and methods. The probe was positioned into the human saliva within an imitated oral environment (Figure 1). The syringe at the end of LLUF probe was withdrawn to create a negative pressure that drove the ultrafiltration process for saliva sampling. During sampling, whole saliva crossed selectively through the polyethersulfone membrane and accumulated inside a syringe. Whole saliva before the sampling with a LLUF probe served as a control. Saliva (10 μl) before and after LLUF probe sampling was spread on agar plates for bacterial detection. Panel A: Saliva with (+LLUF) and without (+LLUF) LLUF probe sampling was spread side-by-side on an antibiotic-free LB agar plate at 37 °C for one day. Panel B: Saliva with and without LLUF probe sampling was spread on an antibiotic-free Brucella broth agar plate under anaerobic conditions using Gas-Pak (BD Biosciences, San Jose, CA) at 37 °C for one day. Bacteria did not grow on agar plates spread with LLUF probe-sampled saliva, demonstrating the capability of LLCF probes in eliminating aerobic as well as anaerobic oral bacteria. Bar: 1.0 cm.
Peptide sequence/ Measured peptide mass | Accession number | Name | |
1 | AGNPQGPSPQGGNKPQ GPPPPPGKPQ 2485.3 | gi|41349484 | Proline-rich protein BstNI subfamily 1 isoform 2 precursor |
gi|41349482 | Proline-rich protein BstNI subfamily 1 isoform 1 precursor | ||
gi|60301553 | Proline-rich protein BstNI subfamily 2 | ||
2 | GGHQQGPPPPPPGKPQ 1576.9 | gi|4826944 | Proline-rich protein HaeIII subfamily 2 |
gi|9945310 | Proline-rich protein HaeIII subfamily 1 | ||
3 | GPPPAGGNPQQPQAPPA GKPQGPPPPPQGGRPP 3126.2 | gi|37537692 | Proline-rich protein BstNI subfamily 4 precursor |
4 | GPPPPGGNPQQPLPPPAGKPQ 2028.3 | gi|113423660 | PREDICTED: hypothetical protein |
5 | GPPPPGKPQGPPPQGDKSRSP 2077.8 | gi|113423262 | PREDICTED: hypothetical protein isoform 5 |
gi|41349482 | Proline-rich protein BstNI subfamily 1 isoform 1 precursor | ||
gi|60301553 | Proline-rich protein BstNI subfamily 2 | ||
gi|113423663 | PREDICTED: hypothetical protein | ||
gi|41349484 | Proline-rich protein BstNI subfamily 1 isoform 2 precursor | ||
gi|41349486 | Proline-rich protein BstNI subfamily 1 isoform 3 precursor | ||
6 | GPPPPPPGKPQGPPPQ GGRPQGPPQGQSPQ 2918.5 | gi|9945310 | Proline-rich protein HaeIII subfamily 1 |
7 | GPPPQEGNKPQRPPPPGRPQ 2131.3 | gi|113423660 | PREDICTED: hypothetical protein |
8 | GPPPQGGNKPQGPPPPGKPQ 2030 | gi|113423663 | PREDICTED: hypothetical protein |
gi|41349482 | Proline-rich protein BstNI subfamily 1 isoform 1 precursor | ||
gi|113423262 | PREDICTED: hypothetical protein isoform 5 | ||
gi|60301553 | Proline-rich protein BstNI subfamily 2 | ||
9 | GPPPQGGRPQGPPQGQSPQ 1866.6 | gi|4826944 | Proline-rich protein HaeIII subfamily 2 |
10 | GPPQQGGHPPPPQGRPQ 1713.8 | gi|9945310 | Proline-rich protein HaeIII subfamily 1 |
gi|4826944 | Proline-rich protein HaeIII subfamily 2 | ||
11 | GPPQQGGHQQGPPPPPPGKPQ 2083.1 | gi|9945310 | Proline-rich protein HaeIII subfamily 1 |
gi|4826944 | Proline-rich protein HaeIII subfamily 2 | ||
12 | GRPQGPPQQGGHQQGP PPPPPGKPQ 2512.6 | gi|4826944 | Proline-rich protein HaeIII subfamily 2 |
gi|9945310 | Proline-rich protein HaeIII subfamily 1 | ||
13 | NKPQGPPPPGKPQGPP PQGGSKSRSSR 2720.2 | gi|113423262 | PREDICTED: hypothetical protein isoform 5 |
gi|113423663 | PREDICTED: hypothetical protein | ||
14 | PQGPPQQGGHPRPP 1450.1 | gi|9945310 | Proline-rich protein HaeIII subfamily 1 |
gi|4826944 | Proline-rich protein HaeIII subfamily 2 | ||
15 | QGRPQGPPQQGGHPRPP 1791.1 | gi|4826944 | Proline-rich protein HaeIII subfamily 2 |
gi|9945310 | Proline-rich protein HaeIII subfamily 1 | ||
16 | SPPGKPQGPPPQ 1186.9 | gi|113423262 | PREDICTED: hypothetical protein isoform 5 |
gi|41349482 | Proline-rich protein BstNI subfamily 1 isoform 1 precursor | ||
gi|60301553 | Proline-rich protein BstNI subfamily 2 | ||
gi|113423663 | PREDICTED: hypothetical protein | ||
gi|41349484 | Proline-rich protein BstNI subfamily 1 isoform 2 precursor | ||
gi|41349486 | Proline-rich protein BstNI subfamily 1 isoform 3 precursor | ||
17 | SPPGKPQGPPPQGGNQ PQGPPPPPGKPQ 2720.3 | gi|113423663 | PREDICTED: hypothetical protein |
gi|41349482 | Proline-rich protein BstNI subfamily 1 isoform 1 precursor | ||
gi|113423262 | PREDICTED: hypothetical protein isoform 5 | ||
gi|60301553 | Proline-rich protein BstNI subfamily 2 | ||
18 | SPPGKPQGPPQQEGNKPQ 1870.9 | gi|37537692 | Proline-rich protein BstNI subfamily 4 precursor |
Table 1. Peptides were exclusively detectable in LLUF-collected samples.
Supplemental Table 1. Click here to view supplemental Table 1.
Supplemental Table 2. Click here to view supplemental Table 2.
Access restricted. Please log in or start a trial to view this content.
We have found that many peptide fragments exist in human undigested saliva. These peptide fragments are derivatives from various forms of proline-rich proteins, actin, alpha amylase, alpha 1 globin, beta globin, histain 1, keratin 1, mucin 7, polymeric immunoglobulin receptor, satherin, S100A9. There could be many factors contributing to the production of peptides with undetermined cleavage sites. For example, some peptide fragments may be naturally present in human whole saliva. Many peptides with -PQ C-termini were ide...
Access restricted. Please log in or start a trial to view this content.
No conflicts of interest declared.
This work was supported by National Institutes of Health Grants (R01-AI067395-01, R21-R022754-01, and R21-I58002-01). We thank C. Niemeyer for critical reading of the manuscript.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Polyethersulfone membranes | Pall Corporation | 30 kDa MWCO | |
Teflon fluorinated ethylene propylene tube | Upchurch Scientific | ||
Blue dextran | Sigma | ||
Nano LC system | Eksigent | ||
C18 trap column | Agilent | 5065-9913 | |
LTQ linear ion-trap mass spectrometer | Thermo Fisher | ||
Sorcerer 2 | Sage-N Research | ||
Acetonitrile-0.1% formic acid | J.T. Baker | 9832-03 | LC/MS grade |
Water-0.1% formic acid | J.T. Baker | 9834-03 | LC/MS grade |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone