JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

We report a method to isolate naïve multipotent skin-derived precursor (SKP) cells from primary human fibroblast cultures. We show that these SKPs derived from fibroblast cultures share similar stem cell properties to the ones derived directly from human skin biopsies. These cells express the neural crest marker, nestin, in addition to the multipotent markers such as OCT4 and Nanog.

Streszczenie

Over the last decade, several adult stem cell populations have been identified in human skin 1-4. The isolation of multipotent adult dermal precursors was first reported by Miller F. D laboratory 5, 6. These early studies described a multipotent precursor cell population from adult mammalian dermis 5. These cells--termed SKPs, for skin-derived precursors-- were isolated and expanded from rodent and human skin and differentiated into both neural and mesodermal progeny, including cell types never found in skin, such as neurons 5. Immunocytochemical studies on cultured SKPs revealed that cells expressed vimentin and nestin, an intermediate filament protein expressed in neural and skeletal muscle precursors, in addition to fibronectin and multipotent stem cell markers 6. Until now, the adult stem cells population SKPs have been isolated from freshly collected mammalian skin biopsies.

Recently, we have established and reported that a population of skin derived precursor cells could remain present in primary fibroblast cultures established from skin biopsies 7. The assumption that a few somatic stem cells might reside in primary fibroblast cultures at early population doublings was based upon the following observations: (1) SKPs and primary fibroblast cultures are derived from the dermis, and therefore a small number of SKP cells could remain present in primary dermal fibroblast cultures and (2) primary fibroblast cultures grown from frozen aliquots that have been subjected to unfavorable temperature during storage or transfer contained a small number of cells that remained viable 7. These rare cells were able to expand and could be passaged several times. This observation suggested that a small number of cells with high proliferation potency and resistance to stress were present in human fibroblast cultures 7.

We took advantage of these findings to establish a protocol for rapid isolation of adult stem cells from primary fibroblast cultures that are readily available from tissue banks around the world (Figure 1). This method has important significance as it allows the isolation of precursor cells when skin samples are not accessible while fibroblast cultures may be available from tissue banks, thus, opening new opportunities to dissect the molecular mechanisms underlying rare genetic diseases as well as modeling diseases in a dish.

Protokół

1. SKP Isolation from Primary Fibroblast Cultures

  1. Fibroblast cultures either from cell banks or directly obtained from skin biopsies are maintained in culture in fibroblast growth medium DMEM containing 15% fetal calf serum, 2 mM glutamine, 10 mg/ml penicillin, and 10 mg/ml streptomycin.

Human fibroblasts GMO3349C and GMO8398A were obtained from the Coriell Institute for Medical Research (Camden, NJ) and were used in this study.

  1. Cultures from population doublings (PPDs) 20 to 35 were used for SKP cultures at a confluency of 80%. One 10 cm tissue culture dish (BD Falcon) contains approximately 1.5x106 cells.
  2. Wash cells with PBS and incubate with 2 ml trypsin solution (0.25%, Invitrogen) for 1 hr at 37 °C.
  3. Collect cells from the plate with 5 ml PBS and transfer the cell suspension to a 15 ml falcon tube.
  4. Incubate the cells at 4 °C for 24 hr.
  5. Prepare SKP growth medium consisting of DMEM-F12, 3:1 (V/V) and 40 ng/ml FGF2 (BD Biosciences, 20 ng/ml EGF (BD Biosciences), B27 serum free supplement 2% (Invitrogen), 1 μg/ml Fungizone (Invitrogen) and 25 μm/ml Gentamycin (Invitrogen).
  6. Pellet the cells at 1,200 rpm for 5 min and resuspend the cell pellet directly in 4 ml SKP growth medium. Transfer the cell suspension to a 25 cm2 tissue culture flask (BD Falcon).
  7. Incubate the flask at 37 °C and monitor the culture for sphere formation daily for 3 to 4 weeks.

2. Sphere Culture Conditions

  1. Culture cells in a 25 cm2 flask (BD Falcon) at 37 °C, 5% CO2.
  2. Shake the flask vigorously daily to avoid cells to adhere to the bottom of the flask. If necessary, pipette up and down with a 2 ml sterile pipette to detach adherent cells and transfer the culture to a new flask.
  3. First spheres start to build within 3 to 4 days.
  4. Let spheres sediment to the bottom of the flask and change half of the medium every 3 days. To keep the same final concentration of growth factors add 2X growth factors to the freshly prepared SKP growth medium.
  5. Keep the volume constant maximum 4 ml.
  6. When spheres reach a size of ~ 200 mm they should be passaged by breaking down the spheres to smaller size by vigorous pipetting up and down with a 2 ml pipette.
  7. The culture is split into two 25 cm2 flasks (BD Falcon) and spheres cultures are feed as described in step 2.4).
  8. Spheres are collected for stem cell markers screening by day 16 to 21.

The procedure from 2.6) and 2.7) describe the propagation of the spheres to (1) allows nutriments and growth factors included in SKP medium to access all cells within each sphere and (2) to expand the SKP sphere culture prior use.

Typically Sphere cultures under our culture conditions maintain the capacity to grow over a period of three months and are passaged between 3 to 4 times.

3. Immunocytochemistry for Stem Cell Markers

  1. Sphere cultures are harvested in PBS by day 16 to 21. Cultures are pelleted at 1,000 rpm for 5 min.
  2. Spheres are resuspended in a small volume of PBS.
  3. Draw two circles with a DAKO pen of approximately 0.5 μm in diameter on microscope slides (Fisher brand).
  4. Add 50 μl of sphere suspension into the circles.
  5. Check by light microscopy for the presence of spheres in each drop.
  6. Let the drops dry under the hood.
  7. Either freeze the slides at -80 °C or proceed with the immunofluoresence staining protocol.
  8. For immunofluorescence staining, fix the slides with pre-cooled Methanol (100%) at -20 °C for 10 min.
  9. Wash the slides with PBS.
  10. Block the slides with PBS/10% Fetal bovine serum / 0.02% Triton X100 for at least 1 hr.
  11. Incubate with primary Antibody (e.g. anti-Nestin, anti-Oct4, anti-TG30, anti-Nanog antibodies, Table 3) diluted in blocking buffer: PBS/10% FBS for 2 hr at room temperature or overnight at 4 °C.
  12. Wash 3 times with blocking buffer and incubate with secondary antibody for 1 hr at room temperature.
  13. Wash 3 times with blocking buffer and 3 times with PBS.
  14. Mount slides with Vectashield mounting medium (Vector Inc.).
  15. Analyze samples for expression of stem cell markers by immunofluorescence microscopy.

4. Realtime PCR Analysis of Expression Levels of Stem Cell Markers

  1. Take approximately 2-3 ml Sphere cultures from day 18 to 21.
  2. Pellet the spheres at 1,200 rpm for 5 min and aspirate all medium.
  3. Isolate RNA from the spheres using the RNeasy Minikit (Qiagen, Valencia, CA).
  4. Assess RNA purity by spectrometry and agarose gel.
  5. Synthesize cDNA (Omniscript Reverse Transcriptase (Qiagen)) using the total cellular RNA as template.
  6. Validate the stem cell markers by Realtime-PCR using primers for stem cell markers (shown in Table 1) in a Power SYBR Green PCR Mastermix (Applied Biosystems) with a concentration of 375 nM of each primer and 50 ng of template in a 20 μl reaction volume. GAPDH is used as endogenous control.
  7. For the amplification use an initial denaturation at 95 °C for 2.5 min followed by 40 cycles at 95 °C for 5 sec and 60 °C for 20 sec.
  8. Analyze the run with the 2(ΔΔCt) method 8.

5. Directed Differentiation into Smooth Muscle Cells

  1. Spheres from day 21 to 26 were plated into 6 well culture dishes (BD Falcon) in SKP medium.
  2. Cells were allowed to adhere and outgrow from the spheres in SKP medium for 72 hr.
  3. Smooth muscle cells (SMCs) differentiation started initiated by replaced the medium with SMC differentiation medium consisting of high-glucose Dulbecco's modified Eagle medium (Invitrogen) containing 5% FBS, 5 ng/ml PDGF-BB (Invitrogen), and 2.5 ng/ml TGF-b1 (Invitrogen).
  4. Medium was changed every 3 days with freshly prepared SMC differentiation medium for a period of 3 to 4 weeks in cultures.
  5. Screening for SMC markers was performed after 3 to 4 weeks by immunohistochemistry.
  6. Cells were fixed with 4% paraformaldehyde solution in PBS for 10 min.
  7. Cells were permeabilized with PBS containing 0.3% Triton X-100 for 30 min.
  8. Cells were incubated with antibodies against αSMA (MO851, Dako, 1:100), or calponin (M3556, Dako, 1:100) for 1 hr at room temperature and further processed as described in 3.12) to 3.15).

Wyniki

We show that a population of cells that selectively expand to generate SKP spheres under controlled growth condition consisting of EGF and FGF2 are present in primary dermal fibroblast cultures (Figure 1) as we reported recently 7.

Fibroblast cultures from PPDs 15 to 25 that typically correspond to the primary fibroblasts strains available from cell banks were used in this study. Fibroblast cultures submitted to the double treatment consisting of cold tempera...

Dyskusje

Using the method described herein, naïve dermal stem cells can be isolated from primary dermal fibroblast cultures. Using this approach, we recently reported the isolation and characterization of adult stem cells from fibroblast cultures derived from patients with a rare genetic syndrome, Hutchinson-Gilford progeria syndrome 7. As show herein those precursor cells express stem cell markers are capable of self-renewal and can be directed to differentiate into different cellular lineages including fib...

Ujawnienia

We have nothing to disclose.

Podziękowania

This work was supported by the Alexander von Humboldt Foundation (5090371), the Christine Kühne Center for Allergy Research and Education (CK-CARE), and the Bayerischen Staatsministerium (to K.D.).

Materiały

NameCompanyCatalog NumberComments
DMEM high glucoseInvitrogen31966-047
DMEM low glucoseInvitrogen21885-108
fetal bovine serumInvitrogen10270-106
L-glutamineInvitrogen25030-024Final conc.: 200 mM
Penicillin/ StreptomycinInvitrogen15140-122Final conc.: 10 mg/ml /10 mg /ml
trypsin solution (0.25%)Invitrogen25200-056
F-12 Nutrient Mixture (Ham)Invitrogen21765-029
FGF2BD Biosciences4114-TC-01MFinal conc.: 40 ng/ml
EGFBD Biosciences236-EG-200Final conc.: 20 ng/ml
PDGFBBInvitrogenPHG0043Final conc.: 5 ng/ml
TGF-b1InvitrogenPHG9204Final conc.: 2.5 ng/ml
25 cm2 flaskOmnilabFALC353109
PBS w/o CaMgInvitrogen14190-169
B27Invitrogen17504-044
MethanolRoth8388.2
Vectashield mounting mediumVector Inc.H-1200
RNeasy MinikitQiagen, Valencia, CA74104
Omniscript Reverse TranscriptaseQiagen205113
SsoFast EvaGreen SupermixBioRad172-5201
FungizoneInvitrogen15290-018Final conc.:1 mg/ml
Table 2. Specific reagents and equipment.

Odniesienia

  1. Jahoda, C. A., Whitehouse, J., Reynolds, A. J., Hole, N. Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp. Dermatol. 12, 849 (2003).
  2. Watt, F. M., Celso, L. o., C, V., Silva-Vargas, Epidermal stem cells: an update. Curr. Opin. Genet. Dev. 16, 518 (2006).
  3. Blanpain, C., Horsley, V., Fuchs, E. Epithelial stem cells: turning over new leaves. Cell. 128, 445 (2007).
  4. Hunt, D. P., Jahoda, C., Chandran, S. Multipotent skin-derived precursors: from biology to clinical translation. Vurr. Opin. Biotechnol. 20, 522 (2009).
  5. Toma, J. G., et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3, 778 (2001).
  6. Fernandes, K. J. L., et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat. Cell Biol. 6, 1082 (2004).
  7. Wenzel, V., et al. Naïve adult stem cells from patients with Hutchinson-Gilford progeria syndrome express low levels of progerin in vivo. Bio. Open. 1, (2012).
  8. Livak, K. J., Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25, 402 (2001).
  9. Biernaskie, J. A., McKenzie, I. A., Toma, J. T., Miller, F. D. Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny. Nature Protocol. 1, 2803 (2006).
  10. Toma, J. G., McKenzie, I., Bagli, D., Miller, F. D. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells. 23, 727 (2005).
  11. Fernandes, K. J., et al. Analysis of the neurogenic potential of multipotent skin-derived precursors. Electrophoresis. 201, 32 (2006).
  12. Hill, l. K. L., et al. Human embryonic stem cell-derived vascular progenitor cells capable of endothelial and smooth muscle cell function. Exp. Hematol. 38, 246 (2010).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Keywords Adult Stem CellsSKPsSkin derived PrecursorsPrimary Fibroblast CulturesMultipotent Precursor CellsDermal PrecursorsNestinVimentinFibronectinStem Cell MarkersTissue BanksGenetic DiseasesDisease Modeling

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone