Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
In this video we first describe fabrication and operation procedures of a surface acoustic wave (SAW) acoustic counterflow device. We then demonstrate an experimental setup that allows for both qualitative flow visualization and quantitative analysis of complex flows within the SAW pumping device.
Surface acoustic waves (SAWs) can be used to drive liquids in portable microfluidic chips via the acoustic counterflow phenomenon. In this video we present the fabrication protocol for a multilayered SAW acoustic counterflow device. The device is fabricated starting from a lithium niobate (LN) substrate onto which two interdigital transducers (IDTs) and appropriate markers are patterned. A polydimethylsiloxane (PDMS) channel cast on an SU8 master mold is finally bonded on the patterned substrate. Following the fabrication procedure, we show the techniques that allow the characterization and operation of the acoustic counterflow device in order to pump fluids through the PDMS channel grid. We finally present the procedure to visualize liquid flow in the channels. The protocol is used to show on-chip fluid pumping under different flow regimes such as laminar flow and more complicated dynamics characterized by vortices and particle accumulation domains.
One of the continued challenges facing the microfluidic community is the need to have an efficient pumping mechanism that can be miniaturized for integration into truly portable micro-total-analysis systems (μTAS's). Standard macroscopic pumping systems simply fail to provide the portability required for μTAS's, owing to the unfavorable scaling of the volumetric flow rates as the channel size decreases down to the micron range or below. On the contrary, SAWs have gained increasing interest as fluid actuation mechanisms and appear as a promising avenue for the solution of some of these problems1,2.
SAWs were shown to provide a very efficient mechanism of energy transport into fluids3. When a SAW propagates onto a piezoelectric substrate, e.g. lithium niobate (LN), the wave will be radiated into any fluid in its path at an angle known as the Rayleigh angle θR = sin−1 (cf /cs), owing to the mismatch of sound velocities in the substrate, cs, and the fluid cf. This leakage of radiation into the fluid gives rise to a pressure wave which drives acoustic streaming in the fluid. Depending on the device geometry and power applied to the device, this mechanism was shown to actuate a wide variety of on-chip processes, such as fluid mixing, particle sorting, atomization, and pumping1,4. Despite the simplicity and effectiveness of actuating microfluids with SAW, there are only a small number of SAW driven microfluidic pumping mechanisms that have been demonstrated to date. The first demonstration was the simple translation of free droplets placed in the SAW propagation path on a piezoelectric substrate3. This novel method generated much interest in using SAWs as a microfluidic actuation method, however there was still a need for fluids to be driven through enclosed channels—a more difficult task. Tan et al. demonstrated pumping within a microchannel that was laser ablated directly into the piezoelectric substrate. By geometric modification with respect to the channel and IDT dimensions, they were able to demonstrate both uniform and mixing flows5. Glass et al. recently demonstrated a method of moving fluids through microchannels and microfluidic components by combining SAW actuated rotations with centrifugal microfluidics, as a demonstration of true miniaturization of the popular Lab-on-a-CD concept6,7. However, the only fully enclosed SAW driven pumping mechanism that has been demonstrated remains to be Cecchini et al.'s SAW-driven acoustic counterflow8—the focus of this video. It exploits the atomization and coalescence of a fluid to pump it through a closed channel in the direction opposing the propagation direction of the acoustic wave. This system can give rise to surprisingly complex flows within a microchannel. Moreover, depending on the device geometry, it can provide a range of flow schemes, from laminar flows to more complex regimes characterized by vortices and particle-accumulation domains. The ability to easily influence the flow characteristics within the device shows opportunities for advanced on-chip particle manipulation.
In this protocol we wish to clarify the main aspects of practical SAW-based microfluidics: device fabrication, experimental operation, and flow visualization. While we are explicitly describing these procedures for the fabrication and operation of SAW-driven acoustic counterflow devices, these sections can easily be modified for their application to a range of SAW-driven microfluidic regimes.
1. Device Fabrication
Note: It is important that all fabrication steps are carried out in a clean room environment to avoid contamination of the device before use.
Note: Any of the optical lithography steps may be replaced by the user preferred methods.
Note: The silanization procedure may be substituted for a preferred hydrophobic coating method13.
2. RF Device Testing
3. Microfluidics and Particle Flow Dynamics Visualization Experiment and Analysis
Figure 2 shows representative results of device RF testing which were taken prior to bonding the LN layer to the microchannel layer: typical S11 and S12 spectra are reported in panel a) and b) respectively. The depth of the valley at central frequency in S11 spectrum is related to the efficiency of conversion of RF power in SAW mechanical power. Hence, for a fixed number of IDT finger pairs, a reduction in the valley minimum will result i...
One of the greatest challenges faced by the microfluidic community is the realization of an actuation platform for truly portable point-of-care devices. Among the proposed integrated micropumps23,those based on surface acoustic waves (SAWs) are particularly attractive due to their associated capabilities in fluid mixing, atomization and particle concentration and separation4. In this paper we have demonstrated how to fabricate and operate a lab-on-chip device in which fluid is steered in a closed PD...
Authors have nothing to disclose.
Authors have no one to acknowledge.
Name | Company | Catalog Number | Comments |
Double side polished 128° YX lithium niobate wafer | Crystal Technology, LLC | ||
Silicon wafer | Siegert Wafers | We use <100> | |
IDT Optical lithography mask with alignment marks (positive) | Any vendor | ||
Channel Optical lithography mask (negative) | Any vendor | ||
Positive photoresist | Shipley | S1818 | |
Positive photoresist developer | Microposit | MF319 | |
Negative tone photoresist | Allresist | AR-N-4340 | |
Negative tone photoresist developer | Allresist | AR 300-475 | |
SU8 thick negative tone photoresist | Microchem | SU-8 2000 Series | |
SU8 thick negative tone photoresist developer | Microchem | SU-8 developer | |
Hexadecane | Sigma-Aldrich | H6703 | |
Carbon tetrachloride (CCl4) | Sigma-Aldrich | 107344 | |
Octadecyltrichlorosilane (OTS) | Sigma-Aldrich | 104817 | |
Acetone CMOS grade | Sigma-Aldrich | 40289 | |
2-propanol CMOS grade | Sigma-Aldrich | 40301 | |
Titanium | Any vendor | 99.9% purity | |
Gold | Any vendor | 99.9% purity | |
PDMS | Dow Corning | Sylgard 184 silicone elastomer kit with curing agent | |
Petri dish | Any vendor | ||
5 mm ID Harris Uni-Core multi-purpose coring tool | Sigma-Aldrich | Z708895 | Any diameter greater than 2 mm is suitable |
Acoustic absorber | Photonic Cleaning Technologies | First Contact regular kit | |
RF-PCB | Any vendor | ||
Spinner | Laurell technologies corporation | WS-400-6NPP | Any spinner can be used |
UV Mask aligner | Karl Suss | MJB 4 | Any aligner can be used |
Thermal evaporator | Kurt J. Lesker | Nano 38 | Any thermal, e-beam evaporator or sputtering system can be used |
Oxygen plasma asher | Gambetti Kenologia Srl | Colibrì | Any plasma asher or RIE machine can be used |
Centrifuge | Eppendorf | 5810 R | Any centrifuge can be used |
Wire bonder | Kulicke Soffa | 4523AD | Any wire bonder can be used if the PCB is used without pogo connectors |
Contact Angle Meter | KSV | CAM 101 | Any contact angle meter can be used |
Spectrum analyzer | Anristu | 56100A | Any spectrum or network analyzer can be used |
RF signal generator | Anristu | MG3694A | Any RF signal generator can be used |
RF high power amplifier | Mini Circuits | ZHL-5W-1 | Any RF high power amplifier can be used |
Microbeads suspension | Sigma-Aldrich | L3280 | Depending on the experimental purpose different suspension of different diameter and different material properties can be used |
Optical microscope | Nikon | Ti-Eclipse | Any optical microscope with spatial resolution satisfying experimental purposes can be used |
Video camera | Basler | A602-f | Any video camera that has enough frame rate and sensitivity satisfying experimental purposes can be used |
Camera acquisition software | Advanced technologies | Motion Box | Any software enabling high and controlled frame rate acquisition can be used |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone