Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Here we report a protocol to measure oxidative stress in living zebrafish embryos. This procedure allows reactive oxygen species (ROS) detection in both whole embryo tissues and single-cell populations. This protocol will accomplish both qualitative and quantitative analyses.

Streszczenie

High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.

Wprowadzenie

Oxidative stress is specifically defined as a condition that results from an unbalanced cellular redox state. The complex redox reactions that routinely occur inside cells determine the cellular redox-state. Redox reactions consist of all chemical reactions that consist in the transfer of electrons between atoms of biological molecules producing reduction and oxidation of molecules (i.e. redox reactions). These reactions are catalyzed by electronically activated species (i.e. pro-oxidative species), which are characterized by an extreme structural instability and spontaneous activation of unbalanced electrons that exchange with neighboring biomolecules. These irregular reactions result into DNA damage, protein carboxylation, and lipid oxidation, and eventually lead to cell death1. Increased levels of oxidative stress have been associated with aging and the progression of different pathological states2. Oxidative stress has been reported to be responsible for vascular alterations in diabetes and cardiovascular diseases3,4. It also plays a critical role in neuronal degeneration in Alzheimer's disease and Parkinson's disease5. Moreover, oxidative stress has been demonstrated as a critical factor in governing cancer progression and metastatic events6,7. In addition, inflammation and immune responses may elicit and further support oxidative stress8.

In living cells, pro-oxidative species are derived from oxygen (ROS; reactive oxygen species) or nitrogen (RNS; reactive nitrogen species). ROS include the hydroxyl radical (.OH), the superoxide anion (O2-), and the hydrogen peroxide (H2O2). The primary RNS is nitrous oxide (NO.). A series of secondary reactive species can be generated by spontaneous interactions between ROS and RNS or free metals ions9. For example, the superoxide anion reacts with nitrous oxide to form peroxynitrate (ONOO-), while H2O2 reacting with Fe2+ generates hydroxyl radicals. ROS and RNS, due to their ability to react with several biomolecules, are considered a dangerous threat for the maintenance of the physiological redox state10. To maintain the redox state cells are equipped with a series of detoxifying anti-oxidant molecules and enzymes. The superoxide dismutase (SOD), Catalase, Glutathione peroxidase and Peroxiredoxins essentially constitute the anti-oxidant enzymatic-arsenal that provides cellular protection from pro-oxidative species including H2O2 , .OH and OONO- 11. Also anti-oxidant molecules like vitamin C and E, polyphenols and CoenzymeQ10 (CoQ10) are of critical importance to quench ROS and their dangerous derivatives12,13. However, an excessive production of ROS and RNS, or a dysfunction in the anti-oxidant system, shifts the cellular redox-state toward oxidative stress14.

Besides their negative connotation, ROS can play various physiological roles in cells of different origin. Cells normally produce ROS as signaling molecules to mediate normal biological events such as host defense and wound repair15-17. Reactive species are normally produced in cells by intracellular enzymes such as NOX (NADPH Oxidase) and XO (Xantine Oxidase) in response to signaling factors, growth factors, and intracellular fluctuations of calcium levels18,19. It has been reported that ROS may differentially modulate the activity of important nuclear factors such as p53 or cellular components such as the ATM-kinase, a master regulator of the response to DNA damage20. Analogously ROS strongly influence cellular signaling by mediating the oxidation and inactivation of protein tyrosine phosphatases (PTPs), which are established as critical regulators of signal transduction21. Moreover, proteomic based methodologies demonstrate that RNS are also responsible for specific protein modifications and alterations of molecular signaling. RNS react with the cysteine thiol groups modifying them into S-nitrothiols (SNO) and triggering molecular pathways concomitant with pathological states such as inflammatory and autoimmune diseases22,23.

Since cell culture experiments only partially reproduce the multitude of factors acting in vivo, it is of great interest to perform redox studies in animal models24,25. To achieve this, the zebrafish has been considered a suitable vertebrate animal model to study oxidative stress dynamics26. The zebrafish is a new model system that grants several advantages to study cellular and genetic events during vertebrate development and disease. Large clusters of embryos can be generated and available weekly for experimental needs. Moreover the extraordinary optical clarity of zebrafish embryos, as well their small size, enables single cell imaging and dynamic tracking in a whole organisms27. In the last decade, a considerable number of zebrafish mutants have been generated to model human pathological conditions such as cancer and genetic diseases28-31. Most importantly, a multitude of transgenic lines has been produced to allow extensive opportunities of genetic and biological manipulations32. For example, transgenic tissue-specific zebrafish lines are regularly utilized for in vivo studies. These lines express a fluorescent protein under the control of a selected promoter, offering the ability to identify single cells in vivo, as well as the anatomical structure they comprise.

Several toxicological studies have already used the zebrafish to evaluate the in vivo effect of chemicals on redox homeostasis, suggesting the suitability of this vertebrate as an animal model for the field of drug discovery and oxidative stress33-35. Even though some fluorescent probes have been tested to monitor oxidative stress in zebrafish larvae36,37, there are no established assays to detect and measure the levels of oxidative stress in zebrafish tissues and living cells. Here we describe a procedure for in vivo quantification of oxidative stress in living cells of zebrafish embryos. Imaging tools, FACS sorting, fluorescent probes and pro-oxidative conditions are all combined to generate a simple assay for the detection and quantification of oxidative species in zebrafish embryos and tissues.

Protokół

1. Preparation of Instruments and Working Solutions

  1. Prepare the fish water solution. Make a stock solution by dissolving 2 g of sea salts 'Instant Ocean' in 50 ml of distilled water. Add 1.5 ml of stock fish water to 1 L distilled water to prepare ready to use fish water (60 µg/ml sea salts final concentration). Autoclave the ready to use fish water before usage. This solution is used as zebrafish embryo medium.
  2. Prepare methylcellulose for embryo mounting. Dissolve 1.5 g of methylcellulose in 50 ml of sterile fish water. Facilitate the dissolution by using a magnet on a stir plate. The complete dissolution of the powder may require several hours. Check the solution for clarity and aliquot into small tubes. Store at -20 °C for months and thaw out aliquots at use. Centrifuge the methylcellulose at 950 x g for 5 min before using. Avoid freeze-thaw cycles of aliquots.
  3. Prepare 50 ml of tricaine/ethyl 3-aminobenzoate methanesulphonate salt (stock solution) by dissolving 200 mg of tricaine in 100 ml water and adjust pH to 7.0 using Tris-HCl 1 M (pH 9). Store this stock at 4 °C for no more than 30 days. CAUTION: tricaine is toxic. Use in accordance with appropriate handling guidelines.
  4. Inducing oxidative stress in zebrafish embryos
    1. Prepare an oxidant solution for generic oxidative stress induction: Make 50 ml of oxidant solution by adding H2O2 stock solution (hydrogen peroxide; 100 mM) to fish water. Use H2O2 of a final concentration between 2 mM and 100 μM. Prepare this solution shortly before usage. The oxidant solution can be applied to both whole mount ROS-detection and single-cell ROS-detection methods. Do not store this solution. CAUTION: H2O2 is dangerous, and harmful by inhalation and if swallowed. Contact with combustible material may cause fire. Handle under a fume hood and wear appropriate personal protective equipment.
    2. Prepare an oxidant solution for mitochondria-derived oxidative stress induction: Make a oxidant stock solution (5 mM) by dissolving 3.9 mg of rotenone in 2 ml of dimethyl sulfoxide (DMSO). Keep this solution at room temperature in the dark.
      1. Dissolve rotenone stock solution to 10 ml of fish water to make a ready to use solution. Use rotenone at a concentration between 5-50 μM. Do not use rotenone at concentrations higher than 100 μM. At appropriate concentrations, this oxidant solution can be applied to both whole mount ROS-detection and single-cell ROS-detection methods. CAUTION: Rotenone is toxic and hazardous. Handle according appropriate precautionary statements.
    3. Induce oxidative stress by gene knock-down: Knock-down nrf2a gene expression in zebrafish embryos by morpholino microinjection as previously reported by Timme-Laragy A. et al., 201238.
    4. Induce oxidative stress after tissue damage: generate a wound margin at the tail fin of zebrafish embryos at 72 hpf as previously described by Niethammer et al., 200939.
  5. Prepare 5 ml of ROS-detection solution for single cell ROS-detection method:
    1. Solution for general ROS detection: Dissolve the generic ROS-sensitive molecular probe in HBSS (Hanks’s Balanced Salt Solution) in order to prepare a working solution (concentration range: 2.5-10 μM). This solution must be prepared shortly before usage.
    2. Solution for specific detection ROS induced by mitochondria: Shortly before use, dissolve a mitochondrial ROS-sensitive probe with DMSO making a 5 mM stock solution. Dissolve stock solution in HBSS in order to prepare a working solution (concentration range: 2.5-10 μM).
      NOTE: Avoid light and oxygen exposure of ROS-detection working solutions and their respective stock solutions. Protect the tube from light by using an aluminum foil. Do not store or re-use probes dissolved in HBSS. Store the stock solutions at -20 °C for a month.
      CAUTION: Handle molecular probes and DMSO under a fume hood in accordance with appropriate guidelines.
  6. Prepare 5 ml of ROS-detection solution for the whole mount ROS-detection method: Dissolve the generic ROS-sensitive probe stock solution (stabilized in DMSO) in HBSS in order to prepare a working solution (concentration range: 2.5-5 μM). Avoid light and oxygen exposure. Protect the tube from light. Prepare this solution before use. Do not store or re-use this solution. CAUTION: Handle molecular probes under a fume hood in accordance with appropriate guidelines.
  7. Make 25 ml of Stop Solution by adding 10 ml of fetal bovine serum to 15 ml of PBS 1x. Keep solution sterile. Store this solution at 4 °C. This solution is required only for single cell - ROS detection method.
  8. Set the zebrafish air incubator at 28 °C.
  9. Set the centrifuge at 4 °C for the single cell ROS-detection method.

2. Mating of Adult Fishes and Selection of Zebrafish Embryos

  1. Set-up adult zebrafish pair crosses according to standard protocols40. Select the appropriate transgenic line in accordance with specific experimental needs.
  2. Collect eggs and place them into a 90-mm dish with fish water/embryo medium. Keep eggs at 28 °C until embryos will develop and grow to the desired developmental stage (e.g., 48 hpf, 72 hpf; hpf: hours post fertilization).
  3. Screen for developing embryos. Exclude all unfertilized eggs or underdeveloped embryos.
  4. Anesthetize embryos by adding 1 ml of tricaine (stock solution) in 50 ml fish water.
  5. Select Tg fluorescent embryos under a stereomicroscope.

3. Treatment of Embryos with Oxidant Agent

  1. Use at least 30 embryos between 48 hpf and 72 hpf per different condition. Wash embryos twice with fresh fish water in order to remove tricaine.
  2. Split fluorescent embryos into three dishes. Put no more than 30 embryos/dish.
  3. Remove the washing solution and add 10 ml of the oxidant solution or 10 ml of fish water as control solution.
  4. Incubate embryos for 10 min to 1 hr at 28 °C. The incubation period depends by the level of oxidative stress to be induced in specific tissues. Short periods are the best as cells affected by oxidative stress progressively undergo cell death.
  5. Transfer embryos into a new dish containing HBSS and wash embryos by swirling. Pre-warm HBSS at 28 °C.

4. Whole Mount ROS Detection Method

  1. Collect embryos after oxidant treatment and put no more than 10 embryos in a small tube. Rinse with HBSS as much as possible. Protect the tube from light using aluminum foil.
  2. Add 1 ml of ROS-detection solution for each tube.
  3. Incubate embryos in the dark for 15 min at 28 °C to avoid light exposure.
  4. During the incubation time prepare a glass slide for whole embryo analysis. Put 300 μl of methylcellulose on a “depression” glass slide and spread it on the glass surface with a pipette tip. Avoid bubbles while releasing the methylcellulose.
  5. At the end of the incubation time, immediately remove the ROS-detection solution and wash twice with 2 ml of HBSS. Wash embryos by inverting the tube several times. Do not pipette or vortex.
  6. Aspirate embryos up into a glass Pasteur pipette. Position embryos near the opening of the pipette and gently eject them into the methylcellulose. Orientate the embryos appropriately with a fine nylon line.
  7. Compare the fluorescence of control embryos with treated embryos. Alternatively, fix parameters of the fluorescence stereomicroscope or confocal microscope so that all embryos are imaged using the same imaging settings.

5. Single Cell ROS-detection Method

  1. Start from step: 3.5. Make sure to have at least 35 embryos for each condition.
  2. Transfer embryos into a new dish. Remove fish water as much as possible. Add 10 ml of ice-cold PBS 1x and 400 μl of Protease Inhibitors Cocktail. Manually dechorionate embryos with forceps and remove the yolk sack with a fine needle. Note: Removing yolk sack ensures clean samples for the following FACS analysis. This step can be avoided according to FACS instrument.
  3. Transfer de-yolked embryos into a 24-well multiwell plate (15 embryos/well) and remove all fish water.
  4. Add 300 μl of HBSS, 30 μl collagenase P, 50 μl Trypsin-EDTA in each well.
  5. Homogenize embryos by gently pipetting up and down with a tight pipette tip (1,000 μl).
  6. Incubate at 28 °C for 20 min and homogenize samples by pipetting every 5 min.
  7. Check tissue disruption by observing an aliquot of homogenate at the compound microscope. Facilitate single cell suspension by pipetting. Do not incubate embryos for more than 30 min.
  8. Stop the reaction by adding 200 μl of Stop Solution. Mix by pipetting gently.
  9. Transfer cell suspension into a pre-chilled tube with tight bottom. Keep tube on ice and avoid light exposure.
  10. Centrifuge for 5 min at 250 x g at 4 °C.
  11. Remove the upper phase and re-suspend cells with ice cold HBSS by gently pipetting.
  12. Count cells and make sure you have the same number of cells in all of your samples. Do not use less than 2 x 106 cells.
  13. Centrifuge cells for 5 min at 250 x g at 4 °C.
  14. Remove supernatant and suspend the pellet with 1 ml of ice chilled HBSS containing the ROS-sensitive probe.
  15. Incubate the tube at room temperature for 3 min in the dark. Vary incubation time according to the level of oxidative stress and to the sensitivity of the probe.
  16. Transfer cells to a FACS tube. Keep tubes on ice and avoid light exposure before FACS analysis.
  17. Sort cells with a fluorescence-activated cell sorter (FACS). Set wavelengths in accordance with Tg tissue fluorescence (e.g., GFP) and the excitation/emission spectra of the molecular probe used for ROS detection (e.g., specific mitochondrial ROS-sensitive probes, generic ROS-sensitive probes).
  18. For each condition, measure all samples within the same experimental session by applying the same FACS settings. Calculate the percentage of fluorescent cells as the mean of different biological replicates. Analyze at least two replicates for each condition.

Wyniki

By applying the method here described, we can easily measure and detect oxidative stress (and ROS levels) in zebrafish embryonic tissues. After crossing adult zebrafish, eggs are collected and allowed to develop at 28 °C to 72 hr post fertilization (hpf). In order to induce oxidative stress, we propose two different approaches: 1) the treatment of embryos with strong pro-oxidant reagents or 2) promoting ROS formation after tissue injury.

In the first approach, we employed two differe...

Dyskusje

Critical Steps

The procedure for oxidative stress detection in zebrafish embryos herein described comprises two different methods. The whole mount ROS-detection method is mainly a qualitative assay for ROS-detection, while the single cell ROS-detection method allows more specific quantitative measurements (Figure 1). Both methods offer a quick and easy way to assess in vivo ROS-detection on zebrafish embryos. However, they both present some critical steps.

Ujawnienia

The authors have nothing to disclose.

Podziękowania

Support in Massimo Santoro lab come from HFSP, Marie Curie Action, Telethon and AIRC. We thank Dafne Gays and Emiliano Panieri for critical reading of the manuscript.

Materiały

NameCompanyCatalog NumberComments
Name of Material/ EquipmentCompanyCatalog NumberComments/Description
Hydrogen peroxide solutionSIGMA516813DO NOT STORE DILUITIONS
Hank's Balanced Salt Solution 1XGIBCO14025
Methyl celluloseSIGMAM0387
Instant Ocean Aquarium Sea Salt MixtureINSTANT OCEANSS15-10
TricaineSIGMAA5040
Cgeneric ROS-sensitive probe:                              CellROX Deep Red ReagentINVITROGENC10422
Mitochondria specific ROS-sensitive probe: MitoSOX INVITROGENM36008dissolve one vial with 13μl of DMSO
HydroethidineINVITROGEND23107
RotenoneSIGMAR8875Prepare 5mM stock solution in DMSO. 
Dimethyl sulfoxideSIGMAD2650
VAS2870; 3-Benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo(4,5-d)pyrimidineEnzoLifeScienceBML-EI395dissolve the powder in DMSO; diluite in fish water
Propidium Iodide Molecular probes       (Life Technologies) P3566
7-aminoactinomycin D (7-AAD) Molecular probes         (Life Technologies) A1310
Nrf2a MorpholinoGeneTools5'-CATTTCAATCTCCATCATGTCTCAG-3'Ref: Timme-LaLaragy et al; 2012 (PMID: 22174413); Kobayashi et al; 2002(PMID:12167159 )
Collagenase PROCHE11213857001Dissolve the powder at 100mg/ml in sterile HBSS. Store aliquots at -20°C
Phosphate-Buffered Saline (PBS)GIBCO10010-056
Fetal Bovine Serum GIBCO10082-147
Complete Protease Inhibitor Cocktail TabletsROCHEDissolve one tablet in 1ml of water
0.5% Trypsin-EDTA (10x), no phenol redGIBCO15400-054Prepare 1X working solution before usage
Compound microscope ZEISS
Stereo microscope with fluorescent illuminationNikonAZ100
camera ZEISSAxioCamMRm
software for fluorescence image acquisitionZEISSZEN 2011
Fluorescence-activated cell sorterBD FACSCalibur
Centrifuge Eppendorf5417R
FACS tubes BD342065
Multiwell Plate BD Falcon353047
Sterilized, non treated Petri dishes 90mmVWR391-1915
Confocal microscopeLeicaLeica SP5

Odniesienia

  1. Alfadda, A. A., Sallam, R. M. Reactive oxygen species in health and disease. J Biomed Biotechnol. 2012, (2012).
  2. Lu, T., Finkel, T. Free radicals and senescence. Exp Cell Res. 314, 1918-1922 (2008).
  3. Chen, A. F., et al. Free radical biology of the cardiovascular system. Clin Sci (Lond. 123, 73-91 (2012).
  4. Selvaraju, V., et al. Diabetes, oxidative stress, molecular mechanism, and cardiovascular disease--an overview. Toxicol Mech Methods. 22, 330-335 (2012).
  5. Gandhi, S., Abramov, A. Y. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev. 2012, (2012).
  6. Shi, X., Zhang, Y., Zheng, J., Pan, J. Reactive oxygen species in cancer stem cells. Antioxid Redox Signal. 16, 1215-1228 (2012).
  7. Cui, X. Reactive oxygen species: the achilles' heel of cancer cells. Antioxid Redox Signal. 16, 1212-1214 (2012).
  8. Park, H., Bourla, A. B., Kastner, D. L., Colbert, R. A., Siegel, R. M. Lighting the fires within: the cell biology of autoinflammatory diseases. Nat Rev Immunol. 12, 570-580 (2012).
  9. Nathan, C., Ding, A. SnapShot: Reactive Oxygen Intermediates (ROI). Cell. 140, 951-951 (2010).
  10. Brown, G. C., Borutaite, V. Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species. Biochem Soc Trans. 34, 953-956 (2006).
  11. Brieger, K., Schiavone, S., Miller, F. J., Krause, K. H. Reactive oxygen species: from health to disease. Swiss Med Wkly. 142, (2012).
  12. Littarru, G. P., Tiano, L., Belardinelli, R., Watts, G. F. Coenzyme Q(10), endothelial function, and cardiovascular disease. Biofactors. 37, 366-373 (2011).
  13. Landete, J. M. Dietary intake of natural antioxidants: vitamins and polyphenols. Crit Rev Food Sci Nutr. 53, 706-721 (2013).
  14. Finkel, T. Oxidant signals and oxidative stress. Curr Opin Cell Biol. 15, 247-254 (2003).
  15. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem J. 417, 1-13 (2009).
  16. Sarsour, E. H., Kumar, M. G., Chaudhuri, L., Kalen, A. L., Goswami, P. C. Redox control of the cell cycle in health and disease. Antioxid Redox Signal. 11, 2985-3011 (2009).
  17. Nathan, C., Shiloh, M. U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A. 97, 8841-8848 (2000).
  18. Finkel, T. Signal transduction by reactive oxygen species. J Cell Biol. 194, 7-15 (2011).
  19. Autreaux, B., Toledano, M. B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 8, 813-824 (2007).
  20. Maryanovich, M., Gross, A. A ROS rheostat for cell fate regulation. Trends Cell Biol. 23, 129-134 (2013).
  21. Tonks, N. K. Redox redux: revisiting PTPs and the control of cell signaling. Cell. 121, 667-670 (2005).
  22. Antelmann, H., Helmann, J. D. Thiol-based redox switches and gene regulation. Antioxid Redox Signal. 14, 1049-1063 (2011).
  23. Foster, M. W., Hess, D. T., Stamler, J. S. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med. 15, 391-404 (2009).
  24. Albrecht, S. C., Barata, A. G., Grosshans, J., Teleman, A. A., Dick, T. P. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab. 14, 819-829 (2011).
  25. Knoefler, D., et al. Quantitative in vivo redox sensors uncover oxidative stress as an early event in life. Mol Cell. 47, 767-776 (2012).
  26. Fang, L., Miller, Y. I. Emerging applications for zebrafish as a model organism to study oxidative mechanisms and their roles in inflammation and vascular accumulation of oxidized lipids. Free Radic Biol Med. 53, 1411-1420 (2012).
  27. White, R. M., et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2, 183-189 (2008).
  28. Amatruda, J. F., Patton, E. E. Genetic models of cancer in zebrafish. Int Rev Cell Mol Biol. 271, 1-34 (2008).
  29. Jing, L., Zon, L. I. Zebrafish as a model for normal and malignant hematopoiesis. Dis Model Mech. 4, 433-438 (2011).
  30. Shin, J. T., Fishman, M. C. From Zebrafish to human: modular medical models. Annu Rev Genomics Hum Genet. 3, 311-340 (2002).
  31. Lieschke, G. J., Currie, P. D. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 8, 353-367 (2007).
  32. Lawson, N. D., Wolfe, S. A. Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Dev Cell. 21, 48-64 (2011).
  33. Duan, J., Yu, Y., Li, Y., Sun, Z. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials. 34, 5853-5862 (2013).
  34. Sobrino-Figueroa, A. S. Evaluation of oxidative stress and genetic damage caused by detergents in the zebrafish Danio rerio (Cyprinidae). Comp Biochem Physiol A Mol Integr Physiol. 165, 528-532 (2013).
  35. Xu, H., et al. Oxidative stress and immune related gene expression following exposure to di-n-butyl phthalate and diethyl phthalate in zebrafish embryos. Ecotoxicol Environ Saf. 93, 39-44 (2013).
  36. Hermann, A. C., Millard, P. J., Blake, S. L., Kim, C. H. Development of a respiratory burst assay using zebrafish kidneys and embryos. J Immunol Methods. 292, 119-129 (2004).
  37. Rieger, S., Sagasti, A. Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin. PLoS Biol. 9, (2011).
  38. Timme-Laragy, A. R., et al. Nrf2b, novel zebrafish paralog of oxidant-responsive transcription factor NF-E2-related factor 2 (NRF2). J Biol Chem. 287, 4609-4627 (2012).
  39. Niethammer, P., Grabher, C., Look, A. T., Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature. 459, 996-999 (2009).
  40. Murphy, M. P., et al. Perspective. Cell Metabolism. 13 (4), 361-366 (2011).
  41. Li, N., et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem. 278, 8516-8525 (2003).
  42. Rhee, S. G., Chang, T. S., Jeong, W., Kang, D. Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol Cells. 29, 539-549 (2010).
  43. Murphy, M. P., et al. Unraveling the biological roles of reactive oxygen species. Cell Metab. 13, 361-366 (2011).
  44. Covassin, L., et al. Global analysis of hematopoietic and vascular endothelial gene expression by tissue specific microarray profiling in zebrafish. Dev Biol. 299, 551-562 (2006).
  45. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn. 203, 253-310 (1995).
  46. Beis, D., Stainier, D. Y. In vivo cell biology: following the zebrafish trend. Trends Cell Biol. 16, 105-112 (2006).
  47. Pan, Y. A., et al. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development. 140, 2835-2846 (2013).
  48. Moussavi Nik, S. H., et al. The BACE1-PSEN-AbetaPP regulatory axis has an ancient role in response to low oxygen/oxidative stress. J Alzheimers Dis. 28, 515-530 (2012).
  49. Matthews, R. P., et al. TNFalpha-dependent hepatic steatosis and liver degeneration caused by mutation of zebrafish S-adenosylhomocysteine hydrolase. Development. 136, 865-875 (2009).
  50. Mukaigasa, K., et al. Genetic evidence of an evolutionarily conserved role for Nrf2 in the protection against oxidative stress. Mol Cell Biol. 32, 4455-4461 (2012).
  51. Mugoni, V., et al. Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell. 152, 504-518 (2013).
  52. Dowling, J. J., et al. Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. Brain. 135, 1115-1127 (2012).
  53. Sun, Y., Dong, Z., Khodabakhsh, H., Chatterjee, S., Guo, S. Zebrafish chemical screening reveals the impairment of dopaminergic neuronal survival by cardiac glycosides. PLoS One. 7, (2012).
  54. Zielonka, J., Kalyanaraman, B. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med. 48, 983-1001 (2010).
  55. Chen, X., Zhong, Z., Xu, Z., Chen, L., Wang, Y. 2',7'-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: Forty years of application and controversy. Free Radic Res. 44, 587-604 (2010).
  56. Karlsson, M., Kurz, T., Brunk, U. T., Nilsson, S. E., Frennesson, C. I. What does the commonly used DCF test for oxidative stress really show. Biochem J. 428, 183-190 (2010).
  57. Belousov, V. V., et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods. 3, 281-286 (2006).
  58. Bjornberg, O., Ostergaard, H., Winther, J. R. Measuring intracellular redox conditions using GFP-based sensors. Antioxid Redox Signal. 8, 354-361 (2006).
  59. Yoo, S. K., Starnes, T. W., Deng, Q., Huttenlocher, A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature. 480, 109-112 (2011).
  60. Uusitalo, L. M., Hempel, N. Recent Advances in Intracellular and In Vivo ROS Sensing: Focus on Nanoparticle and Nanotube Applications. Int J Mol Sci. 13, 10660-10679 (2012).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Keywords Oxidative StressReactive Oxygen SpeciesROSZebrafish EmbryosIn VivoFluorescent ROS ProbesTransgenic Fluorescent LinesWhole Embryo ROS detectionSingle cell ROS DetectionOxidant AgentsGenetic ScreensAnimal ModelsNeurological DisordersCancer

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone