Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Mice have been used as a model for studying many forms of transplantation, including corneal transplantation. We describe in this report a murine model for both acute and late-term corneal transplantation.
Corneal transplantation is the most common form of organ transplantation in the United States with between 45,000 and 55,000 procedures performed each year. While several animal models exist for this procedure and mice are the species that is most commonly used. The reasons for using mice are the relative cost of using this species, the existence of many genetically defined strains that allow for the study of immune responses, and the existence of an extensive array of reagents that can be used to further define responses in this species. This model has been used to define factors in the cornea that are responsible for the relative immune privilege status of this tissue that enables corneal allografts to survive acute rejection in the absence of immunosuppressive therapy. It has also been used to define those factors that are most important in rejection of such allografts. Consequently, much of what we know concerning mechanisms of both corneal allograft acceptance and rejection are due to studies using a murine model of corneal transplantation. In addition to describing a model for acute corneal allograft rejection, we also present for the first time a model of late-term corneal allograft rejection.
Corneal transplantation is one of the most successful and common types of transplantation performed in humans. The reasons why this surgery is performed are a result of injury, infectious disease1, or other forms of non-infectious corneal disease2. Figures from the Eye Bank Association of America indicate that over 46,000 were performed in 2011 (see web site at: restoresight.org/eye_banks/eye_banks.html). An indication of its success is that one year failure rates for allogeneic corneal grafts range from 10 to 15% and at 5 years the success is in excess of 70%3-8. As many studies have shown, the success of corneal allografts is directly related to the fact that the eye is an immunologically privileged site. Factors responsible for the corneas status as an immune privilege site include the lack of both blood and lymph vessels in the cornea, a relative absence of antigen presenting cells, factors produced by the cornea that suppress immune effector funtions9-15, low expression of MHC antigens16, and the expression of FasL17-20.
However, in spite of these factors predisposing these grafts for success, they do undergo rejection3-7. Consequently, understanding those mechanisms that mediate this rejection as well as testing various therapies to prevent rejection is of critical importance. To that end, we describe here a murine model of corneal transplantation that has been in use for over 20 years to study corneal transplantation in a controlled experimental environment. Since transplantation responses involve many different factors working in concert that will ultimate determine whether the transplanted tissue fails or succeeds, it is not possible to understand the importance of those factors in any in vitro model. Consequently, studies using intact animals are required to determine what factors are important to either success or failure of transplanted tissue.
While other species of animals have been used to study corneal transplantation, the murine model has several advantages when compared to using other species. The first is the existence of many strains of mice that express certain transgenes or have been gene-targeted to lack expression of specific immunological factors whose function in transplantation can be better studied. In addition, there are many reagents (both recombinant factors and antibodies that neutralize factors) that are specific for mice and which do not exist for many other species of animals. Because of the existence of these factors, this model has been used extensively to identify relevant factors involved in acute corneal allograft responses15,17,18,20-29. Furthermore, many of the factors involved in corneal transplantation are also known to be functional in transplantation of other tissues.
NOTE: All animals used in this procedure are treated in accordance with the Association for Research in Vision and Ophthalmology statement for the Use of Animals in Ophthalmic and Vision Research as well as the guidelines set down by the animal oversight committee at Saint Louis University.
NOTE: All surgical instruments and solutions are sterilized prior to surgery to limit microbial infection of the eye. It should be noted that while the animals do experience some pain from this procedure, we do not employ analgesics. The reason for this is because all analgesics are anti-inflammatory and since corneal transplantation responses involve inflammation, the use of anti-inflammatory drugs would compromise our ability to determine what factors are involved in corneal graft failure.
1. Anesthesia
2. Corneal Grafting
3. Suture Removal
4. Clinical Evaluation
5. Manipulation of the Model
The murine model of corneal transplantation has been used for over 20 years to successfully characterize mechanisms of both corneal allograft rejection19-23 and corneal allograft acceptance13,15,16,18, 24-27. This model was used to establish the importance of FasL expression in corneal allograft acceptance, in that animals that lack FasL were not able to accept corneal allografts15. It has also been used to demonstrate that vascular endothelial growth factor receptor...
The murine model of corneal transplantation described here enables the investigator to study human corneal allograft rejection in a model that is predictive of what factors are best associated with both rejection15,17,18,20, 26-30 and acceptance21-25 of corneal allografts. Unlike human corneal transplantation, in which patients are given either topical or systemic steroid treatment to either treat or prevent rejection31, this model is typically used to determine those factors that are rel...
The authors have no competing financial interests.
The authors would like to thank the many individuals who have worked on and perfected this technique and have been responsible for the generation of many manuscripts both in this lab and others. This work was supported by National Institutes of Health Grant EY12707 (PMS) and an unrestricted grant from Research to Prevent Blindness to Department of Ophthalmology.
Name | Company | Catalog Number | Comments |
Zeiss Surgical Microscope | Zeiss | Rebuilt | |
1 ml Syringe | BD | 305122 | |
3 ml Syringe | BD | 309657 | |
10 ml Syringe | BD | 309602 | |
Vannus Scissors | Stortz | E-3387 | |
11-0 Sutures | Alcon | 717939M | |
Trephine 2.0 mm | Katena | K 2-7520 | |
Trephine 1.5 mm | Katena | K 2-7510 | |
Tricaine Hydrochloride 0.5% | Alcon | NDC 0065-0741-12 | |
Healon | Abbott | Healon OVD | |
Forceps | FST | 11251-20 | |
7-0 Sutures | Alcon | 8065 | |
2.5% Phenylephrine HCl | Alcon | NDC 61314-342-02 | |
1% Tropicamide | Bausch & Lomb | NDC-24208-585-59 | |
Hamilton Syringe | Hamilton | 7654-01 | |
33 gauge needle | Hamilton | 90033 | |
Cell Strainer (100 μm nylon) | BD Falcon | 352360 | |
Hemocytometer | Cardinal Health | B3175 | |
Trypan Blue | Sigma | T8154 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone