Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Using MRI scans (human), 3D imaging software, and immunohistological analysis, we document changes to the brain’s lateral ventricles. Longitudinal 3D mapping of lateral ventricle volume changes and characterization of periventricular cellular changes that occur in the human brain due to aging or disease are then modeled in mice.
The ventricular system carries and circulates cerebral spinal fluid (CSF) and facilitates clearance of solutes and toxins from the brain. The functional units of the ventricles are ciliated epithelial cells termed ependymal cells, which line the ventricles and through ciliary action are capable of generating laminar flow of CSF at the ventricle surface. This monolayer of ependymal cells also provides barrier and filtration functions that promote exchange between brain interstitial fluids (ISF) and circulating CSF. Biochemical changes in the brain are thereby reflected in the composition of the CSF and destruction of the ependyma can disrupt the delicate balance of CSF and ISF exchange. In humans there is a strong correlation between lateral ventricle expansion and aging. Age-associated ventriculomegaly can occur even in the absence of dementia or obstruction of CSF flow. The exact cause and progression of ventriculomegaly is often unknown; however, enlarged ventricles can show regional and, often, extensive loss of ependymal cell coverage with ventricle surface astrogliosis and associated periventricular edema replacing the functional ependymal cell monolayer. Using MRI scans together with postmortem human brain tissue, we describe how to prepare, image and compile 3D renderings of lateral ventricle volumes, calculate lateral ventricle volumes, and characterize periventricular tissue through immunohistochemical analysis of en face lateral ventricle wall tissue preparations. Corresponding analyses of mouse brain tissue are also presented supporting the use of mouse models as a means to evaluate changes to the lateral ventricles and periventricular tissue found in human aging and disease. Together, these protocols allow investigations into the cause and effect of ventriculomegaly and highlight techniques to study ventricular system health and its important barrier and filtration functions within the brain.
An ependymal cell monolayer lines the ventricular system of the brain providing bi-directional barrier and transport functions between the cerebral spinal fluid (CSF) and interstitial fluid (ISF) 1-3. These functions help to keep the brain toxicant-free and in physiological balance 2,3. In humans loss of portions of this lining through injury or disease does not appear to result in regenerative replacement as found in other epithelial linings; rather loss of ependymal cell coverage appears to result in periventricular astrogliosis with a meshwork of astrocytes covering regions denuded of ependymal cells at the ventricle surface. Serious repercussions to important CSF/ISF exchange and clearance mechanisms would be predicted to result from loss of this epithelial layer 1,2,4-7.
A common feature of human aging is enlarged lateral ventricles (ventriculomegaly) and associated periventricular edema as observed by MRI and fluid-attenuated inversion recovery MRI (MRI/FLAIR) 8-14. To investigate the relationship between ventriculomegaly and the cellular organization of the ventricle lining, postmortem human MRI sequences were matched with histological preparations of lateral ventricle periventricular tissue. In cases of ventriculomegaly, substantial areas of gliosis had replaced ependymal cell coverage along the lateral ventricle wall. When ventricle expansion was not detected by MRI-based volume analysis, the ependymal cell lining was intact and gliosis was not detected along the ventricle lining 6. This combinatorial approach represents the first comprehensive documentation detailing changes in cellular integrity of the lateral ventricle lining using wholemount preparations of portions or the entire lateral ventricle wall and 3D modeling of ventricle volumes 6. Several diseases (Alzheimer’s disease, schizophrenia) and injuries (traumatic brain injury) show ventriculomegaly as an early neuropathological feature. Denudation of areas of the ependymal cell lining thereby would be predicted to interfere with normal ependymal cell function and compromise the homeostatic balance between CSF/ISF fluid and solute exchange. Thus, a more thorough examination of changes to the ventricular system, its cellular composition, and the consequence to underlying or neighboring brain structures will ultimately begin to reveal more about the neuropathology associated with ventricle enlargement.
The lack of multimodal imaging data, and in particular longitudinal data sequences, together with limited access to corresponding histological tissue samples makes analysis of human brain pathologies difficult. Modeling phenotypes found in human aging or disease can often be achieved with mouse models and animal models become one of our best means to explore questions about human disease initiation and progression. Several studies in healthy young mice have described the cytoarchitecture of the lateral ventricle walls and the underlying stem cell niche 4,7-15. These studies have been extended to include 3D modeling and cellular analysis of the ventricle walls through aging 6,15. Neither periventricular gliosis nor ventriculomegaly are observed in aged mice, rather mice display a relatively robust subventicular zone (SVZ) stem cell niche subjacent to an intact ependymal cell lining 6,15. Thus, striking species-specific differences exist in both the general maintenance and integrity of the lateral ventricle lining during the process of aging 6,15. Therefore, to best use mice to interrogate conditions found in humans, differences between the two species need to be characterized and appropriately considered in any modeling paradigm. Here, we present procedures to evaluate longitudinal changes to the lateral ventricles and associated periventricular tissue in both humans and mouse. Our procedures include 3D rendering and volumetry of both mouse and human ventricles, and use of immunohistochemical analysis of whole mount preparations of periventricular tissue to characterize both cellular organization and structure. Together these procedures provide a means to characterize changes in the ventricular system and associated periventricular tissue.
NOTE: Animal procedures were approved by the University of Connecticut IACUC and conform to NIH guidelines. Human tissue and data analysis and procedures were in compliance with and approved by the University of Connecticut IRB and conform to NIH guidelines.
1. Mouse: Analysis of Periventricular Cellular Integrity and 3D Modeling of the Lateral Ventricle
1.1) Preparation of Mouse Lateral Ventricle Wall Whole Mounts
1.2) Immunohistochemistry for Lateral Ventricle Analysis
1.3) Lateral Ventricle Segmentation for 3D Reconstructions
NOTE: Perform tracing of lateral ventricles using mapping software on an upright epifluorescence microscope with an automated stage and a digital CCD camera for fluorescence detection.
1.4) Lateral Ventricle 3D Reconstruction
2. Human: Analysis of Periventricular Cellular Integrity and 3D Modeling of the Lateral Ventricle
2.1) Human MRI Data Analysis
NOTE: Protocols are listed to create 3D image reconstructions and volumetric quantification of the lateral ventricles and assess volumetric changes over time using longitudinal overlay analysis. It is important to note that consistency in MR data collection (e.g., machine and magnet strength, section thickness, orientation and resolution) and post-acquisition processing are extremely important criteria for inclusion of data sets 20.
2.2) Human Periventricular Tissue Preparation and Analysis
Contour tracing of the mouse lateral ventricles based on immunostained 50 µm coronal sections and 3D reconstructions (Figure 3) allows volume data to be collected in different experimental paradigms using mouse as a model system for disease or injury. Critical to this procedure is the exclusion of regions where the lateral ventricle walls adhere to each other. By subsegmenting regions of the ventricles and designating a different color for each region (Figure 3C), contiguous section...
We present tools and protocols that can be used to evaluate the integrity of the brain’s ventricular system in mice and in humans. These tools, however, can also be applied to other brain structures or organ systems that undergo changes due to injury, disease, or during the process of aging 14,21,22. The strategies presented take advantage of software that allows the alignment of cross-sectional and longitudinal MRI sequences to generate 3D volume representations of specific regions or structures of inte...
The authors have nothing to disclose.
An NINDS Grant NS05033 (JCC) supported this work. The University of Connecticut RAC, SURF and OUR programs provided additional support.
Name | Company | Catalog Number | Comments |
Phosphate buffered saline (PBS) | Life Technologies | 21600-069 | |
Paraformaldehyde (PFA) | Electron Microscopy Sciences | 19210 | Use at 4% in PBS, 4 °C |
Normal Horse Serum | Life Technologies | 16050 | 10% in PBS-TX (v/v) |
Normal Goat Serum | Life Technologies | 16210 | 10% in PBS-TX (v/v) |
Triton X-100 (TX) | Sigma-Aldrich | T8787 | 0.1% in PBS (v/v) |
Vibratome | Leica | VT1000S | |
Fluorescence Microscope | Zeiss | Imager.M2 | |
Camera | Hamamatsu | ORCA R2 | |
Microscope Stage Controller | Ludl Electronic Products | MAC 6000 | |
Stereology software | MBF Bioscience | Stereo Investigator 11 | |
Stereology software | ImageJ/NIH | NIH freeware | |
3D Reconstruction software | MBF Bioscience | Neurolucida Explorer | |
Confocal Microscope | Leica | TCS SP2 | |
MRI Software | |||
Freesurfer | https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall | Segmentation and Volume | |
ITK-Snap | http://www.itksnap.org/pmwiki/pmwiki.php | Segmentation and Volume | |
Multi-image Analysis GUI (Mango) | http://ric.uthscsa.edu/mango/ | Longitudinal overlay | |
Whole Mount Equipment | |||
22.5° microsurgical straight stab knife | Fisher Scientific | NC9854830 | |
parafilm | |||
wax bottom dissecting dish | |||
pins | |||
fine forceps | |||
aquapolymount | |||
Dissecting Microscope | Leica | MZ95 | |
Whole Mount Antibodies | |||
mouse anti-b-catenin | BD Bioschiences, San Jose, CA, USA | 1:250 | |
goat anti-GFAP | Santa Cruz Biotechnology | 1:250 | |
rabbit anti-AQP4 (aquaporin-4) | Sigma-Aldrich | 1:400 | |
Coronal Antibodies | |||
Anti-S100β antibody | Sigma-Aldrich | 1:500 | |
4’,6-diamidino-2-phenylindole (DAPI) | Life Technologies | D-1306 | 10 µg/ml in PBS |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone