Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
A protocol is presented for the synthesis and preparation of nanoparticles consisting of electroactive polymers.
A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated aromatic precursor to give the conjugated monomer. Polymer films can be prepared via electropolymerization of the monomer and characterized using cyclic voltammetry and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. Nanoparticles (NPs) are prepared via emulsion polymerization of the monomer using a two-surfactant system to yield an aqueous dispersion of the polymer NPs. The NPs are characterized using dynamic light scattering, electron microscopy, and UV-Vis-NIR-spectroscopy. Cytocompatibility of NPs is investigated using the cell viability assay. Finally, the NP suspensions are irradiated with a NIR laser to determine their effectiveness as potential materials for photothermal therapy (PTT).
Electroactive polymers change their properties (color, conductivity, reactivity, volume, etc.) in the presence of an electric field. The rapid switching times, tunability, durability, and lightweight characteristics of electroactive polymers have led to many proposed applications, including alternative energy, sensors, electrochromics, and biomedical devices. Electroactive polymers are potentially useful as flexible, light-weight battery and capacitor electrodes.1 Applications of electroactive polymers in electrochromic devices include glare-reduction systems for buildings and automobiles, sunglasses, protective eyewear, optical storage devices, and smart textiles.2-5 Smart windows can reduce energy requirements by blocking specific wavelengths of light on-demand and protecting interiors of homes and automobiles. Smart textiles can be used in clothing to help protect against UV radiation.6 Electroactive polymers have also begun to be used in medical devices. Among electroactive polymers used in biomedical devices, polypyrrole (PPy), polyaniline (PANI), and poly(3,4-ethylenedioxythiophene) (PEDOT) are among the most common. For example, these types of polymers are commonly used as transducers in biosensor devices.7 Applications in therapeutic delivery have also shown promise; studies have demonstrated the release of drugs and therapeutic proteins from devices prepared from electroactive polymers.8-12 More recently, electroactive polymers have been used as therapeutic agents in photothermal therapy.13-15 In photothermal therapy, photothermal agents must absorb light in the near-infrared (NIR) region (~ 700−900 nm), also known as the therapeutic window, where light has the maximum depth of penetration in tissue, typically up to 1 cm.16,17 In this range, biological chromophores such as hemoglobin, oxygenated hemoglobin, lipids, and water have little-to-no absorbance, which enables light to penetrate easily. When photothermal agents absorb light in this therapeutic window, the photoenergy is converted to photothermal energy.
Irvin and co-workers have previously reported alkoxy-substituted bis-EDOT benzene monomers that were synthesized using Negishi coupling.18 Negishi coupling is a preferred method for carbon-carbon bond formation. This process has many advantages, including the use of organozinc intermediates, which are less toxic and tend to have higher reactivity than other organometallics used.19,20 Organozinc compounds are also compatible with a wide range of functional groups on the organohalides.20 In the Negishi coupling reaction, an organohalide and organometal are coupled through the use of a palladium(0) catalyst.20 In the work presented herein, this cross coupling method is utilized in the synthesis of 1,4-dialkoxy-2,5-bis(3,4-ethylenedioxythienyl) benzene (BEDOT-B(OR)2) monomers. These monomers can then be easily polymerized electrochemically or chemically to yield polymers that are promising candidates for use in biomedical applications.
Conventional methods for preparation of colloidal polymeric suspensions in aqueous solutions for biomedical applications typically involve the dissolution of bulk polymers followed by nanoprecipitation or emulsion-solvent evaporation techniques.21,22 In order to produce NPs of poly(BEDOT-B(OR)2), a bottom-up approach is demonstrated here where the NPs are synthesized via in situ emulsion polymerization. Emulsion polymerization is a process that is easily scalable and is a relatively fast method for NP preparation.22 Studies using emulsion polymerization to produce NPs of other electroactive polymers have been reported for PPy and PEDOT.15,23,24 PEDOT NPs, for example, have been prepared using spray emulsion polymerization.24 This method is difficult to reproduce, and typically yields larger, micron-sized particles. The protocol described in this article explores the use of a drop-sonication method to reproducibly prepare 100-nm polymer NPs.
In this protocol, electroactive polymers tailored to absorb light in the NIR region similar to previously reported poly(BEDOT-B(OR)2) are synthesized and characterized to demonstrate their potential in electrochromic devices and as PTT agents. First, the protocol for the synthesis of the monomers via Negishi coupling is described. The monomers are characterized using NMR and UV-Vis-NIR spectroscopy. The preparation of NP colloid suspensions via oxidative emulsion polymerization in aqueous media is also described. The procedure is based on a two-step emulsion polymerization process previously described by Han et al. that is applied to the different monomers. A two-surfactant system is used to control the NP monodispersity. A cell viability assay is used to evaluate cytocompatibility of the NPs. Lastly, the potential of these NPs to act as PTT transducers is demonstrated by irradiation with a NIR laser.
Caution: Please consult all relevant Safety Data Sheets (SDS) before use. Several of the reagents used in these syntheses are potentially hazardous. Please use all appropriate safety practices including personal protective equipment (safety glasses, gloves, lab coat, long pants, and closed-toe shoes), and perform syntheses in fume hoods. Lithiation is particularly hazardous and should only be performed by properly trained individuals with supervision.
1. Monomer Synthesis
Note: Figure 1 shows the chemical route for the preparation of precursors and monomers whose synthesis is described in Sections 1.2 - 1.5.
2. Electrochemistry
3. NP Preparation
Figure 2 shows a schematic of the process used for NP preparation via emulsion polymerization.
4. Polymer Films and NP Characterization
Note: Characterize the polymer films and NPs via UV-Vis-NIR spectroscopy, and the NPs using dynamic light scattering, zeta potential analysis, and electron microscopy.
5. Investigate the Cytocompatibility of the NPs
Note: All cell manipulations should be carried out in a biosafety cabinet (laminar flow hood) to prevent contamination of the cells with bacteria, yeast, or fungi from the environment, and to protect the user from potentially infectious diseases. All solutions and supplies used with the cells should be sterile. Use proper aseptic cell culture techniques.
6. Photothermal Transduction Studies
Note: In this work a laser system previously described by Pattani and Tunell is utilized.33
The reaction protocol yielding M1 and M2 is shown in Figure 1. The monomers can be characterized by 1H and 13C NMR spectroscopy, melting point, and elemental analysis. The 1H NMR spectrum provides information regarding the connectivity of atoms and their electronic environments; thus, it is routinely used to verify that reactions have been completed successfully. Negishi coupling reactions involve coupling of the phenyl ring to the EDOT, c...
In this work, electroactive polymer NPs have been synthesized as potential PTT agents for cancer treatment. The preparation of the NPs is described, starting with the synthesis of the monomers followed by emulsion polymerization. While the preparation of NPs using electroactive polymers such as EDOT and pyrrole has been described before, this paper describes the preparation of polymeric NPs starting with unique extended conjugation monomers, demonstrating that this process can be extended to larger, more complex monomers...
The authors have nothing to disclose.
This work was funded in part by the Texas Emerging Technology Fund (Startup to TB), the Texas State University Research Enhancement Program, the Texas State University Doctoral Research Fellowship (to TC), the NSF Partnership for Research and Education in Materials (PREM, DMR-1205670), The Welch Foundation (AI-0045), and National Institutes of Health (R01CA032132).
Name | Company | Catalog Number | Comments |
2 mm diameter platinum working electrode | CH Instruments | CH102 | Polished using very fine sandpaper |
3,4-ethylenedioxythiophene | Sigma-Aldrich | 483028 | Purified by vacuum distillation |
3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) 98% | Alfa Aesar | L11939 | |
505 Sonic Dismembrator | Fisher Scientific™ | FB505110 | 1/8 “ tip and rated at 500 watts |
808 nm laser diode | ThorLabs | L808P1WJ | Rated at 1 W |
Acetonitrile anhydrous 99% | Acros | 61022-0010 | |
Avanti J-26 XPI | Beckman Coulter | 393127 | |
Bromohexane 98% | MP Biomedicals | 202323 | |
Dialysis (100,000) MWCO | SpectrumLabs | G235071 | |
Dimethyl sulfoxide 99% (DMSO) | BDH | BDH1115 | |
Dimethylformamide anhydrous (DMF) 99% | Acros | 326870010 | |
Dodecyl benzenesulfonate (DBSA) | TCI | D0989 | |
Dulbecco’s modified eagle medium (DMEM) | Corning | 10-013 CV | |
EMS 150 TES sputter coater | Electron Microscopy Sciences | ||
Ethanol (EtOH) 100% | BDH | BDH1156 | |
ethyl 4-bromobutyrate (98%) | Acros | 173551000 | |
Ethyl acetate 99% | Fisher | UN1173 | |
Fetal bovine serum (FBS) | Corning | 35-010-CV | |
Helios NanoLab 400 | FEI | ||
Hexane | Fisher | H306-4 | |
Hydrochloric acid (HCl) | Fisher | A142-212 | |
Hydroquinone 99.5% | Acros | 120915000 | |
Hydrozine anhydrous 98% | Sigma-Aldrich | 215155 | |
Indium tin oxide (ITO) coated galss | Delta Technologies | CG-41IN-CUV | 4-8 Ω/sq |
Iron chloride 97% FeCl3 | Sigma-Aldrich | 157740 | |
Magnesium sulfate (MgSO4) | Fisher | 593295 | Dried at 100 oC |
SKOV-3 | ATCC | HTB-26 | |
Methanol | BDH | BHD1135 | |
n-Butlithium (2.5 M) | Sigma-Aldrich | 230707 | Pyrophoric |
Poly(styrenesulfonate-co-malic acid) (PSS-co-MA) 20,000 MW | Sigma-Aldrich | 434566 | |
Potassium carbonate | Sigma-Aldrich | 209619 | Dried at 100 oC |
Potassium hydroxide | Alfa Aesar | A18854 | |
Potassium iodide | Fisher | P410-100 | |
RO-5 stirplate | IKA-Werke | ||
SC4000 IR camera | FLIR | ||
Synergy H4 Hybrid Reader | Biotek | ||
Tetrabutylammonium perchlorate (TBAP) 99% | Sigma-Aldrich | 3579274 | Purified by recrystallization in ethyl acetate |
Tetrahydrofuran anhydrous (THF) 99% | Sigma-Aldrich | 401757 | |
tetrakis(triphenylphosphine) palladium(0) | Sigma-Aldrich | 216666 | Moisture sensitive |
Thermomixer | Eppendorf | ||
USB potentiostat/galvanostat | WaveNow | AFTP1 | |
Zetasizer Nano Zs | Malvern | Optical Arrangment 175o | |
Zinc chloride (1 M) ZnCl2 | Acros | 370057000 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone