Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Investigating the interactions between bacterial pathogens and their hosts is an important area of biological research. Here, we describe the necessary techniques to measure effector translocation by Coxiella burnetii during siRNA gene silencing using BlaM substrate.
Coxiella burnetii, the causative agent of Q fever, is an intracellular pathogen that relies on a Type IV Dot/Icm Secretion System to establish a replicative niche. A cohort of effectors are translocated through this system into the host cell to manipulate host processes and allow the establishment of a unique lysosome-derived vacuole for replication. The method presented here involves the combination of two well-established techniques: specific gene silencing using siRNA and measurement of effector translocation using a FRET-based substrate that relies on β-lactamase activity. Applying these two approaches, we can begin to understand the role of host factors in bacterial secretion system function and effector translocation. In this study we examined the role of Rab5A and Rab7A, both important regulators of the endocytic trafficking pathway. We demonstrate that silencing the expression of either protein results in a decrease in effector translocation efficiency. These methods can be easily modified to examine other intracellular and extracellular pathogens that also utilize secretion systems. In this way, a global picture of host factors involved in bacterial effector translocation may be revealed.
Coxiella burnetii is a unique intracellular pathogen that causes the zoonotic human infection Q fever. This disease is associated with a broad spectrum of clinical presentations extending from asymptomatic seroconversion to life-threatening chronic infection that often manifests as endocarditis years after exposure1. Human infection occurs primarily through the inhalation of contaminated aerosols with ruminants the major reservoir for infection, in particular, dairy cows, sheep and goats. Although Coxiella infection in these animals is typically subclinical, the infection may trigger abortion and the considerable bacterial load within the birthing fluid and placenta can contaminate the local environment1. An example of the enormous burden such contamination can have on both public health and the agriculture industry was recently observed in the Q fever outbreak that occurred in the Netherlands2. Between 2007 and 2010, over 4,000 human cases of Q fever were diagnosed and this outbreak was linked to significant contamination of goat farms3. Additionally, Coxiella is a potential biological weapon, as classified by the US Centers for Disease Control and Prevention, due to the environmental stability of the bacteria and low infectious dose necessary to cause severe morbidity and mortality4.
Coxiella exists in two phases: Phase I organisms, isolated from natural sources, are extremely virulent and Phase II organisms are highly attenuated in vivo. For example, after several in vitro passages of Coxiella burnetii Nine Mile Phase I organisms, Phase II bacteria were produced that contain an irreversible chromosomal deletion resulting in truncated lipopolysaccharide (LPS)5. This strain, C. burnetii NMII, is phenotypically similar to Phase I in tissue culture models and provides a safer model for researchers to study Coxiella pathogenesis in laboratories5. In recent years several breakthroughs have rapidly advanced the field of Coxiella genetics. Most notably, the development of axenic media (acidified citrate cysteine medium - ACCM-2) has allowed the cell-free growth of Coxiella in both liquid and on solid media6,7. This resulted in direct improvements of genetic tools available for Coxiella including an inducible gene expression system, shuttle vectors and random transposon systems8-11. Most recently, two methods for targeted gene inactivation have also been developed, paving the way for examining specific virulence gene candidates12.
Following internalization by alveolar macrophages, Coxiella replicates to high numbers within a membrane-bound compartment termed the Coxiella-containing vacuole (CCV). The CCV requires host endocytic trafficking through early and late endosomes until it matures into a lysosome-derived organelle13. Throughout this process, the CCV acquires host factors that either appear transiently or remain associated with the vacuole, including, but not limited to, Rab5, Rab7, CD63 and LAMP-113-15. Replication of Coxiella within host cells is entirely dependent on a fully functional Dot/Icm Type IVB Secretion System (T4SS)8,16,17. This secretion system is a multi-protein structure ancestrally related to conjugation systems and spans both bacterial and vacuolar membranes to deliver bacterial proteins, termed effectors, into the host cytoplasm18. The Coxiella T4SS is functionally very similar to the well characterized Type IVB Dot/Icm Secretion System of Legionella pneumophila19,20. Interestingly, activation of the T4SS and subsequent effector translocation does not occur until Coxiella reaches the acidic lysosome-derived organelle, approximately 8 hr post-infection17,21. To date, over 130 Dot/Icm effectors have been identified9,17,22-24. Many of these effectors likely play important roles during replication of Coxiella within host cells; however, only a few effectors have been functionally characterized25-29.
In this study we utilize a fluorescence based translocation assay that relies on cleavage of the CCF2-AM FRET substrate (hereafter referred to as the BlaM substrate) via β-lactamase activity within the host cell cytoplasm (Figure 1). The gene of interest is fused to TEM-1 β-lactamase (BlaM) on a reporter plasmid that provides constitutive expression. The BlaM substrate is composed of two fluorophores (coumarin and fluorescein) that form a FRET pair. Excitation of the coumarin results in FRET of the fluorescein and green fluorescence emission in the absence of effector translocation; however, if the BlaM-effector fusion protein is translocated into the host cytoplasm, the resultant β-lactamase activity cleaves the β-lactam ring of the BlaM substrate, separating the FRET pair producing blue fluorescence emission following excitation. This translocation assay has been well proven as an approach to identify effector proteins from a range of different intracellular and extracellular bacteria, including C. burnetii, L. pneumophila, L. longbeachae, Chlamydia trachomatis, enteropathogenic E. coli, Salmonella and Brucella17,30-35.
To determine the role of specific host factors on Coxiella effector translocation we utilize a well-established method for gene silencing known as RNA interference, in particular small interfering RNA (siRNA). Originally identified in Caenorhabditis elegans, RNA interference is a conserved endogenous cellular process used for innate defense against viruses as well as gene regulation36,37. After binding of sequence-specific siRNA, degradation of mRNA occurs through RISC (RNA-induced silencing complex) resulting in specific gene silencing or knockdown38. In this study, siRNA was used to target two host proteins, Rab5A and Rab7A, which are important regulators of the endocytic pathway. The impact of silencing Rab5A and Rab7A on effector translocation was ascertained using C. burnetii pBlaM-CBU0077. CBU0077 was selected as it was previously shown to be translocated by the Dot/Icm secretion system of Coxiella17.
Utilizing both siRNA gene silencing and the fluorescencebased translocation assay described here, we are beginning to establish a role for host factors in the translocation of effector proteins by Coxiella. This approach can be applied to a wide range of both intracellular and extracellular bacteria that possess similar secretion systems responsible for the translocation of effector proteins.
Note: All procedures involving the growth or manipulation of Coxiella burnetii RSA439 NMII should be performed in a Physical Containment Level 2 Laboratory and within a biological safety cabinet in compliance with local guidelines. A schematic diagram of the reverse transfection and translocation assay workflow described below is shown in Figure 2.
1. Preparation of C. burnetii Culture Expressing CBU0077 Fused to β-lactamase (pBlaM-CBU0077) (DAY 1)
2. Reverse Transfection of siRNA and Seeding of HeLa 229 Cells (DAY 4)
3. Change Media (DAY 5)
4. Quantification of Coxiella burnetii pBlaM-CBU0077 Strain using qPCR (DAY 7)
5. Infection of Reverse Transfected Cells (DAY 7)
6. Addition of BlaM Substrate to Determine Level of Translocation (DAY 8)
7. Analysis of Results:
8. Addition of Nuclei Stain to Determine Cell Number after Translocation Assay (DAY 8)
For this study, the C. burnetii pBlaM-CBU0077 strain was selected as CBU0077 has been previously shown to be a translocated effector of the Coxiella Dot/Icm secretion system17. Prior to infection, the total number of genomes/ml in the seven day C. burnetii pBlaM-CBU0077 culture was enumerated using qPCR. Figure 4 demonstrates an example of the cycle threshold (Ct) values expected from both standards and samples following qPCR. The Ct ...
Secretion systems, and the bacterial effector proteins these systems transport into the cytoplasm of host cells, are an important virulence component that many pathogenic bacteria utilize to establish an infection within unique replicative niches. The focus of many research groups has been to investigate the interplay between bacterial effectors and host proteins and the influence these effectors have on host cellular pathways. Very limited research, if any, has examined the potential for host proteins to be necessary fo...
The authors have nothing to disclose.
This work was supported by National Health and Medical Research Council (NHMRC) grants (Grant ID 1062383 and 1063646) awarded to HJN. EAL is supported by an Australian Postgraduate Award.
Name | Company | Catalog Number | Comments |
Reagents | |||
Citric acid | Sigma | C0759 | ACCM-2 medium component |
Sodium citrate | Sigma | S4641 | ACCM-2 medium component |
Potassium phosphate | Sigma | 60218 | ACCM-2 medium component |
Magnesium chloride | Calbiochem | 442611 | ACCM-2 medium component |
Calcium chloride | Sigma | C5080 | ACCM-2 medium component |
Iron sulfate | Fisher | S93248 | ACCM-2 medium component |
Sodium chloride | Sigma | S9625 | ACCM-2 medium component |
L-cysteine | Sigma | C6852 | ACCM-2 medium component |
Bacto-neopeptone | BD | 211681 | ACCM-2 medium component |
Casamino acids | Fisher | BP1424 | ACCM-2 medium component |
Methyl beta cyclodextrin | Sigma | C4555 | ACCM-2 medium component |
RPMI + Glutamax | ThermoFisher Scientific | 61870-036 | ACCM-2 medium component |
Chloramphenicol | Sigma | C0378 | For bacterial culture |
ON-TARGETplus Non-targeting Control Pool (OTP) | Dharmacon | D-001810-10-05 | Non-targeting control |
siGENOME Human PLK1 (5347) siRNA - SMARTpool | Dharmacon | M-003290-01-005 | Causes cell death; measure of transfection efficiency |
siGENOME Human RAB5A (5968) siRNA - SMARTpool | Dharmacon | M-004009-00-0005 | |
siGENOME Human RAB7A (7879) siRNA - SMARTpool | Dharmacon | M-010388-00-0005 | |
5X siRNA buffer | Dharmacon | B-002000-UB-100 | Use sterile RNase-free water to dilute 5X siRNA buffer to 1X siRNA buffer |
DharmaFECT-1 Transfection Reagent | Dharmacon | T-2001-01 | For transfection |
Opti-MEM + GlutaMAX | ThermoFisher Scientific | 51985-034 | Reduced-serum medium used for transfection |
DMEM + GlutaMAX | ThermoFisher Scientific | 10567-014 | For cell culture and infection |
Heat-inactivated fetal calf serum (FCS) | Thermo Scientific | SH30071.03 | Can use alternate equivalent product |
DMSO | Sigma | D8418 | For storage of Coxiella strain |
PBS | For cell culture | ||
0.05% Trypsin + EDTA | ThermoFisher Scientific | 25300-054 | For cell culture |
dH2O | For dilution of samples and standards for qPCR | ||
Quick-gDNA Mini Prep | ZYMO Research | D3007 | Can use alternate equivalent product to extract gDNA |
SensiFAST SYBR No-ROX Kit | Bioline | BIO-98020 | Can use alternate equivalent qPCR master mix product for qPCR reaction |
LiveBLAzer FRET-B/G Loading kit with CCF2-AM | Invitrogen | K1032 | For measurement of translocation using fluorescence and generation of the 6X loading solution (contains Solution A, B, C and DMSO) |
Sodium hydroxide | Merck | 106469 | Probenicid solution component |
Sodium phosphate monobasic | Sigma | 71505 | Probenicid solution component |
di-Sodium hydrogen orthophosphate | Merck | 106586 | Probenicid solution component |
Probenicid | Sigma | P8761 | Probenicid solution component |
DRAQ5 Fluorescent Probe Solution (5 mM) | ThermoFisher Scientific | 62251 | Nuclei stain to determine cell viablity. Use 1:4000 diluted in PBS. |
4% PFA (paraformaldehyde) solution in PBS | Sigma | P6148 | Fixing solution for HeLa 229 cells |
25cm2 tissue culture flask with vented cap | Corning | 430639 | For growth of bacterial strain |
96 Well Flat Clear bottom Black Polystyrene TC-Treated Microplates, Individually wrapped, with Lid, Sterile | Corning | 3603 | |
75cm2 tissue culture flask with vented cap | Corning | 430641 | For growth of HeLa 229 cells |
175cm2 tissue culture flask with vented cap | Corning | 431080 | For growth of HeLa 229 cells |
Haemocytometer | For quantification of HeLa 229 cells | ||
Tear-A-Way 96 Well PCR plates | 4titude | 4ti-0750/TA | For qPCR reaction |
8-Lid chain, flat | Sarstedt | 65.989.002 | For qPCR reaction |
Name | Company | Catalog Number | Comments |
Equipment | |||
Bench top microfuge | |||
Bench top vortex | |||
Orbital mixer | |||
Centrifuge | Eppendorf | 5810 R | For pelleting bacterial culture |
Nanodrop | For gDNA quantification | ||
Mx3005P QPCR machine | Aligent Technologies | 401456 | For quantification of Coxiella genomes in 7 day culture |
ClarioSTAR microplate reader | BMG LabTech | For measurement of fluorescence |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone