Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
A protocol for the in situ monitoring of the diffusion of guest molecules in porous media using electron paramagnetic resonance (EPR) imaging is presented.
A method is demonstrated to monitor macroscopic translational diffusion using electron paramagnetic resonance (EPR) imaging. A host-guest system with nitroxide spin probe 3-(2-Iodoacetamido)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (IPSL) as a guest inside the periodic mesoporous organosilica (PMO) aerogel UKON1-GEL as a host and ethanol as a solvent is used as an example to describe the protocol. Data is shown from a previous publication, where the protocol has been applied to both IPSL and Tris(8-carboxy-2,2,6,6-perdeutero-tetramethyl-benzo[1,2-d:4,5-d′]bis(1,3)dithiole) methyl (Trityl) as guest molecules and UKON1-GEL and SILICA-GEL as host systems.
A method is shown to prepare aerogel samples that cannot be synthesized directly in the sample tube for measurement due to a size change during synthesis. The aerogel is attached to sample tubes using heat shrink tubing and a pressure cooker to reach the necessary temperature without evaporating the solvent in the process. The method does not assume a clearly defined initial distribution of guest molecules at the start of the measurement. Instead, it requires a reservoir on top of the aerogel and experimentally determines the influx rate during data analysis.
The diffusion is monitored continually over a period of 20 hr by recording the 1d spin density profile within the sample. The spectrometer settings for the imaging experiment are described quantitatively. Data analysis software is provided to take the resonator sensitivity profile into account and to numerically solve the diffusion equation. The software determines the macroscopic translational diffusion coefficient by least square minimization of the difference between the experiment and the numerical solution of the diffusion equation.
Porous materials play a major role in practical applications such as catalysis and chromatography1. By adding surface groups and adjusting the pore size and surface properties, the materials can be tailored to the desired application2,3. The functionality of the porous material crucially depends on the diffusion properties of the guest molecules inside the pores. In porous materials, a distinction must be made between the microscopic translational diffusion constant Dmicro, which describes diffusion on a molecular length scale on one hand and the macroscopic translational diffusion constant Dmacro on the other hand, which is influenced by the diffusion through multiple pores, grain boundaries, tortuosity and inhomogeneity of the material.
There are several magnetic resonance methods available to study diffusion, each suitable for a particular length scale. On the millimeter scale, nuclear magnetic resonance (NMR) imaging4 and electron paramagnetic resonance (EPR) imaging (as presented in this protocol) can be used. Smaller scales become accessible by the use of pulsed field gradients in NMR as well as EPR experiments5,6. On the nanometer scale, EPR spectroscopy can be used by observing changes of the Heisenberg exchange interaction between spin probes7,8. Studies of translational diffusion using EPR imaging range from industrial catalyst supports, e.g., aluminum oxide9, to anisotropic fluids10,11, drug release systems made of polymer gels12-14 and model membranes15.
This protocol presents an in situ approach using EPR imaging to monitor macroscopic translational diffusion of spin probes in cylindrical, porous media. It is demonstrated for a host-guest system consisting of the nitroxide spin probe 3-(2-Iodoacetamido)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (IPSL) as a guest inside the periodic mesoporous organosilica (PMO) aerogel UKON1-GEL as a host and ethanol as a solvent. This protocol has successfully been used previously16 to compare Dmacro as determined with EPR imaging with Dmicro for the host materials UKON1-GEL and SILICA-GEL and guest species IPSL and Tris(8-carboxy-2,2,6,6-perdeutero-tetramethyl-benzo[1,2-d:4,5-d′]bis(1,3)dithiole) methyl (Trityl), see Figure 1.
In other methods based on continuous wave (CW) EPR imaging17, diffusion takes place outside of the spectrometer. In contrast, the method presented here uses an in situ approach. A series of snapshots of the 1d spin density distribution ρ1d (t, γ) is recorded over a period of several hours. During this time, one snapshot is taken after the other and delivers a real-time diffusion pattern with a time resolution of approximately 5 min.
UKON1-GEL and SILICA-GEL have been synthesized in sample tubes with an inner diameter of 3 mm as described in literature.16,18,19 The UKON1-GEL and SILICA-GEL synthesis leads to a shrinking of the sample. The samples are placed inside a heat-shrink tube to prevent guest molecules from moving between the aerogel and the wall of the sample tube. This additional step is not necessary for samples that can be synthesized directly in the sample tube without changing their size. The aerogel samples collapse when they dry out, so they must be submerged in solvent at all times. The temperature that is needed for the heat shrink tubing is higher than the boiling point of ethanol at ambient pressure. Therefore the protocol describes the use of a pressure cooker to raise the boiling point of ethanol.
The protocol covers the sample preparation of UKON1-GEL synthesized beforehand for the EPR imaging experiment and the spectrometer settings that are used to monitor diffusion of IPSL spin probe. For data analysis, locally written software is provided and its use is described. The raw data from the spectrometer can be directly loaded. The software calculates the spatial 1d spin density distribution ρ1d (t, γ) and takes into account the resonator sensitivity profile. The user can select a region of the aerogel and a time window, over which the diffusion constant is to be determined. The software then determines the boundary conditions of the diffusion equation based on that selection and solves the diffusion equation. It supports least square fitting to find the value of Dmacro where the numerical solution best matches the experimental data.
The protocol can be used with adjustments for different guest and host materials as long as the cross sectional area of the sample does not change throughout the sample, that is ρ1d (t, γ) gives direct access to the concentration and is not influenced by a change in sample cross section. The range of accessible values for Dmacro is estimated16 between 10-12 m2/sec and 7·10-9 m2/sec.
Caution: Please consult all relevant material safety data sheets (MSDS) before use. Ethanol is harmful if swallowed or inhaled and it is flammable.
1. Optimize the Continuous Wave (CW) EPR Parameters
2. Determine the Magnetic Field Gradient Strength and the Time Resolution
3. Prepare the Sample
Caution: Wear safety glasses.
Note: Keep the aerogel completely submerged in solvent at all times. See Figure 2 for a photograph and schematic.
4. Prepare the Spectrometer
5. Prepare the Sample for Measurement
Note: The only time critical steps of this protocol are 5.3 through 6.2, which is from the start of the diffusion process with the addition of the spin label until the time the data acquisition in the spectrometer starts. Perform these steps without introducing any delays.
6. Perform the Diffusion Experiment
7. Perform Additional Experiments Needed for Data Analysis
Note: Conduct the experiments in 7.1 and 7.2 with the same sample directly after the diffusion experiment and without moving the sample.
8. Data Analysis
A photo and schematic of an aerogel within the shrinking tube is shown in Figures 2a and 2b. The 2d EPR image in Figure 2c clearly shows the upper edge of the aerogel. The intensity of ρ1d within the sample tube above the aerogel is lower although the concentration of the spin probe is at least as high as within the aerogel. However, the sample depth perpendicular to the picture plane is much smaller due to the sm...
The protocol allows monitoring of the diffusion of paramagnetic guest molecules. A 1d imaging approach has been chosen because it allows for a higher time resolution compared to 2d or 3d imaging. The 1d approach requires a constant cross sectional area of the sample because the intensity of the obtained 1d image depends not only on the concentration but also on the cross sectional area of the sample. The method also requires that the EPR spectra of the spin probes within the samples only change in intensity but not in sh...
The authors have nothing to disclose.
The authors thank Prof. Peter Imming and Diana Müller for synthesis of the Trityl spin probe and Prof. Sebastian Polarz, Martin Wessig and Andreas Schachtschneider for the synthesis of the porous materials. Financial support by the DFG (DR 743/7-1) and within the SPP 1570 is gratefully acknowledged.
Name | Company | Catalog Number | Comments |
X-Band spectrometer | Bruker | E580 | |
Spectrometer software | Bruker | Xepr 2.6b.108 | |
gradient coil system | Bruker | E540 GCX2 | |
imaging resonator | Bruker | TMHS 1007 | |
micro-classic pipette controller | Brand | 25900 | |
microcapillary ringcaps 50 µl | Hirschmann | 9600150 | inner diameter 0.5 mm |
EPR sample tube 2 mm inner diameter | Bruker | ER 221TUB/2 | |
EPR sample tube 4 mm inner diameter | Bruker | ER 221TUB/4 | |
heat-shrink tubing DERAY-IB | DSG-Canusa | 2210048952 | 4.8 mm/2.4 mm, 2:1, 95 °C - 200 °C |
heat gun | Bosch | PHG 600-3 | |
PTFE band | VWR | 332362S | width 12 mm |
test tube | length 16 cm, diameter 1.5 cm | ||
beaker | 250 ml, height 9 cm, diameter 7 cm | ||
capillary tube sealing | Fisher Scientific | 02-678 | |
pressure cooker, 3l with trivet | Beem | Vital-X-Press V2, F1000675 | |
magnetic stirrer with heating element | |||
ethanol (p.a.) | |||
ethanol (techn.) | |||
syringe | Hamilton | 1705 | 0.05 ml, custom length: 20 cm, |
Pasteur capillary pipette | length 23 cm | ||
data analysis software | homemade | Available for download at http://www.uni-konstanz.de/drescher/software. Requires Matlab. | |
UKON1-GEL | kindly provided by Prof. Sebastian Polarz, Martin Wessig and Andreas Schachtschneider | See references 16, 18, 19 for the synthesis |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone