Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Lipids are known to play an important role in cellular functions. Here, we describe a method to determine the lipid composition of neutrophils, with emphasis on the cholesterol level, by using both HPTLC and HPLC to gain a better understanding of the underlying mechanisms of neutrophil extracellular trap formation.
Lipid analysis performed by high performance thin layer chromatography (HPTLC) is a relatively simple, cost-effective method of analyzing a broad range of lipids. The function of lipids (e.g., in host-pathogen interactions or host entry) has been reported to play a crucial role in cellular processes. Here, we show a method to determine lipid composition, with a focus on the cholesterol level of primary blood-derived neutrophils, by HPTLC in comparison to high performance liquid chromatography (HPLC). The aim was to investigate the role of lipid/cholesterol alterations in the formation of neutrophil extracellular traps (NETs). NET release is known as a host defense mechanism to prevent pathogens from spreading within the host. Therefore, blood-derived human neutrophils were treated with methyl-β-cyclodextrin (MβCD) to induce lipid alterations in the cells. Using HPTLC and HPLC, we have shown that MβCD treatment of the cells leads to lipid alterations associated with a significant reduction in the cholesterol content of the cell. At the same time, MβCD treatment of the neutrophils led to the formation of NETs, as shown by immunofluorescence microscopy. In summary, here we present a detailed method to study lipid alterations in neutrophils and the formation of NETs.
Lipids have been shown to play important roles in cell homeostasis, cell death, host-pathogen interactions, and cytokine release1. Over time, interest for and knowledge on the impact of lipids in host-pathogen interactions or inflammation have increased, and several publications confirm the central role of certain lipids, especially the steroid cholesterol, in cellular responses. Pharmacological treatment with statins, which are used as inhibitors of cholesterol biosynthesis by blocking 3-hydroxy-3-methylglutaryl-coenzym-A-reductase (HMG-CoA-reductase), can act as anti-inflammatory agents by lowering the serum levels of interleukin 6 and C-reactive protein2. Cholesterol- and glycosphingolipid-enriched structures can be used by several pathogens, such as bacteria and viruses, as a gateway into the host3,4,5,6. Sphingolipids (e.g., sphingomyelin) have been shown to be used by pathogens to promote their pathogenicity7. In macrophages, mycobacteria use cholesterol-enriched domains for entering cells; a depletion of cholesterol inhibits mycobacterial uptake8. Furthermore, infection of macrophages with Francisella tularensis, a zoonotic agent responsible for tularemia (also known as rabbit fever)9, led to an infection that was abolished when cholesterol was depleted from the membranes10. Similarly, the invasion of host cells by Escherichia coli via lipid-rich structures was demonstrated to be cholesterol-dependent4. Moreover, Salmonella typhimurium infection experiments of epithelial cells demonstrated that cholesterol is essential for pathogen entry into the cells11. Cholesterol depletion inhibited the uptake of Salmonella11. Furthermore, a recent study by Gilk et al. demonstrated that cholesterol plays an important role in the uptake of Coxiella burnetti12. Additionally, Tuong et al. found that 25-hydroxycholesterol plays a crucial role in phagocytosis by lipopolysaccharide (LPS)-stimulated macrophages13. Phagocytosis was reduced when macrophages were pharmacologically treated to deplete cholesterol14. Thus, cholesterol and other lipids seem to play an important role in infection and inflammation, since their depletion can reduce the risk of invasion from several pathogens10,11,12.
Recently, we were able to show that lipid alterations, especially the depletion of cholesterol from the cell, induce the formation of neutrophil extracellular traps (NETs) in human blood-derived neutrophils15. Since the discovery of NETs in 2004, they have been shown to play critical roles in bacterial entrapment, and thus in hindering the spread of infection16,17. NETs consist of a DNA backbone associated with histones, proteases, and antimicrobial peptides16. The release of the NETs by neutrophils can be induced by invading pathogens18,19 and chemical substances such as phorbol-myristate-acetate (PMA) or statins16,20. However, the detailed cellular mechanisms, and especially the role of lipids in this process, are still not entirely clear. The analysis of lipids can lead to a better understanding of the mechanisms involved in a wide variety of cellular processes and interactions, such as the release of NETs. Cholesterol and sphingomyelin are vital constituents of the cell membrane and lipid microdomains, where they add stability and facilitate the clustering of the proteins involved in protein trafficking and signaling events21. To investigate the mechanistic role of certain lipids, amphiphilic pharmacological agents, such as the cyclic oligosaccharide methyl-β-cyclodextrin (MβCD), can be used to alter the lipid composition of a cell and to reduce cholesterol in vitro15. Here, we present a method to use HPTLC to analyze the lipid composition of neutrophils in response to MβCD. HPLC was used to confirm the level of cholesterol in the neutrophil population. Furthermore, we describe a method to visualize the formation of NETs by immunofluorescence microscopy in human blood-derived neutrophils in response to MβCD.
The collection of the peripheral blood in this protocol was approved by the local human research ethics commission. All human subjects provided their written informed consent.
1. Isolation of Human Blood-derived Neutrophils by Density Gradient Centrifugation
2. Lipid Isolation and Analysis of Human Blood-derived Neutrophils
3. Visualization and Quantification of NETs
Human blood-derived neutrophils were isolated by density gradient centrifugation (Figure 2). To investigate the effect of lipid alterations on neutrophils, the cells were treated with 10 mM MβCD, which depletes cholesterol from the cell. Subsequently, the lipids were isolated from the samples by Bligh and Dyer (Figure 1, left panel), as described by Brogden et al.23. The prepared lipid samples were loaded onto silica ...
The methods described here can be used to analyze specific lipids, such as cholesterol, by HPTLC or HPLC and to investigate the effects of pharmacological lipid alterations on the formation of NETs (see Neumann et al.15).
HPTLC is a relatively cost-effective and simple method to analyze a broad range of lipids in a large number of samples. This method has been used in many research areas, including antibiotic quantification25, lipid stor...
The authors have nothing to disclose.
This work was supported by a fellowship of the Akademie für Tiergesundheit (AfT) and a fellowship from the PhD program, "Animal and Zoonotic Infections," of the University of Veterinary Medicine, Hannover, Germany, provided to Ariane Neumann.
Name | Company | Catalog Number | Comments |
Neutrophil isolation, NET staining and quantification | |||
Alexa Flour 633 goat anti-rabbit IgG | Invitrogen | A-21070 | |
Anti-MPOα antibody | Dako | A0398 | |
BSA | Sigma-Aldrich | 3912-100G | |
Marienfeld-Neubauer improved counting chamber | Celeromics | MF-0640010 | |
Confocal microscope TCS SP5 AOBS with tandem scanner | Leica | DMI6000CS | |
Dulbecco´s PBS 10x | Sigma-Aldrich | P5493-1L | Dilute 1:10 in water for 1x working solution |
Dy Light 488 conjugated highly cross-absorbed | Thermo Fisher Scientific | 35503 | |
Excel | Microsoft | 2010 | |
DNA/Histone 1 antibody | Millipore | MAB3864 | |
ImageJ | NIH | 1.8 | http://imagej.nih.gov/ij/ |
Light microscope | VWR | 630-1554 | |
Methyl-β-cyclodextrin | Sigma-Aldrich | C4555-1G | |
PFA | Carl Roth | 0335.3 | dissolve in water, heat up to 65 °C and add 1 N NaOH to clear solution |
PMA | Sigma-Aldrich | P8139-1MG | Stock 16 µM, dissolved in 1x PBS |
Poly-L-lysine | Sigma-Aldrich | P4707 | |
Polymorphprep | AXIS-SHIELD | AN1114683 | |
ProLong Gold antifade reagent with DAPI | Invitrogen | P7481 | |
Quant-iT PicoGreen dsDNA Reagent | Invitrogen | P7581 | |
RPMI1640 | PAA | E 15-848 | |
HBSS with CaCl and Mg | Sigma | H6648 | |
Triton X-100 | Sigma-Aldrich | T8787-50ml | |
Trypanblue | Invitrogen | 15250-061 | 0.4% solution |
Water | Carl Roth | 3255.1 | endotoxin-free |
Name | Company | Catalog Number | Comments |
Lipid isolation and analysis | |||
1-propanol | Sigma-Aldrich | 33538 | |
10 µL syringe | Hamilton | 701 NR 10 µl | |
Diethyl ether | Sigma-Aldrich | 346136 | |
Ethyl acetate | Carl Roth | 7336.2 | |
Canullla 26 G | Braun | 4657683 | |
Copper(II)sulphatepentahydrate | Merck | 1027805000 | |
Chloroform | Carl Roth | 7331.1 | |
CP ATLAS software | Lazarsoftware | 2.0 | |
Chromolith HighResolution RP-18 endcapped 100-4.6 mm column | Merck | 152022 | |
High Performance Liquid Chromatograph Chromaster | Hitachi | HITA 892-0080-30Y | Paramaters are dependent on individual HPLC machine |
HPLC UV Detector | Hitachi | 5410 | |
HPLC Column Oven | Hitachi | 5310 | |
HPLC Auto Sampler | Hitachi | 5260 | |
HPLC Pump | Hitachi | 5160 | |
Methanol | Carl Roth | 7342.1 | |
n-Hexane | Carl Roth | 7339.1 | |
Phosphoric acid | Sigma-Aldrich | 30417 | |
Potassium chloride | Merck | 49,361,000 | |
Potters | LAT Garbsen | 5 ml | |
SDS | Carl Roth | CN30.3 | |
HPTLC silica gel 60 | Merck | 105553 | |
Vacufuge plus basic device | Eppendorf | 22820001 | |
Corning Costar cell culture 48-well plate, flat bottom | Sigma | CLS3548 | |
Coverslip | Thermo Fisher Scientific | 1198882 | |
Glass slide | Carl Roth | 1879 | |
BD Tuberculin Syringe Only 1 mL | BD Bioscience | 309659 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone