Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Here, we present a refined protocol to effectively reveal biotinylated dextran amine (BDA) labeling with a fluorescent staining method through a reciprocal neural pathway. It is suitable for analyzing the fine structure of BDA labeling and distinguishing it from other neural elements under a confocal laser scanning microscope.
High molecular weight biotinylated dextran amine (BDA) has been used as a highly sensitive neuroanatomical tracer for many decades. Since the quality of its labeling was affected by various factors, here, we provide a refined protocol for the application of high molecular weight BDA for studying optimal neural labeling in the central nervous system. After stereotactic injection of BDA into the ventral posteromedial nucleus (VPM) of the thalamus in the rat through a delicate glass pipette, BDA was stained with fluorescent streptavidin-Alexa (AF) 594 and counterstained with fluorescent Nissl stain AF500/525. On the background of green Nissl staining, the red BDA labeling, including neuronal cell bodies and axonal terminals, was more distinctly demonstrated in the somatosensory cortex. Furthermore, double fluorescent staining for BDA and the calcium-binding protein parvalbumin (PV) was carried out to observe the correlation of BDA labeling and PV-positive interneurons in the cortical target, providing the opportunity to study the local neural circuits and their chemical characteristics. Thus, this refined method is not only suitable for visualizing high quality neural labeling with the high molecular weight BDA through reciprocal neural pathways between the thalamus and cerebral cortex, but also will permit the simultaneous demonstration of other neural markers with fluorescent histochemistry or immunochemistry.
High molecular weight BDA (10,000 molecular weight), a highly sensitive tracer, has been used for tracing neural pathways in the central nervous system for over 20 years1. Although the use of the BDA is a common neural tract tracing technique, the quality of BDA labeling can be affected in animals by various factors1,2,3. Our recent study indicated that the optimal structure of BDA labeling is not only associated with a proper post-injection survival time, but also correlated with the staining method4. Until now, conventional avidin-biotin-peroxidase complex (ABC), streptavidin-fluorescein isothiocyanate, and streptavidin-AF594 staining methods were used for revealing the BDA labeling in previous studies2,3,4,5. In comparison, fluorescent staining for BDA can be easily performed.
In order to extend the application of high molecular weight BDA, a refined protocol was introduced in the present study. Following the injection of BDA into the VPM of the thalamus in the rat brain, BDA labeling was revealed by the regular method of standard ABC staining as well as by double fluorescent staining, which was carried out for observing the correlation of BDA labeling and basic neural elements or interneurons in the cortical target with streptavidin-AF594 and fluorescent Nissl histochemistry or PV-immunochemistry, respectively. Through the reciprocal neural pathways between VPM and the primary somatosensory cortex (S1)6,7,8, we focused our observation on BDA labeling in the thalamocortical projected axons and corticothalamic projected cell somas in the S1. By this process, we expected to provide not only a detailed protocol for obtaining the high quality of neural labeling with high molecular weight BDA, but also a refined protocol on the combination of fluorescent BDA labeling and other fluorescent neural markers with histochemistry or immunochemistry. This approach is preferable to study the local neural circuits and their chemical characteristics under a confocal laser scanning microscopy.
This study was approved by the ethics committee at the China Academy of Chinese Medical Sciences (reference number 20160014). All procedures were conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (National Academy Press, Washington, D.C., 1996). Four adult male rats (weight 250-280 g) were used in this study. All animals were housed in a 12 h light/dark cycle with controlled temperature and humidity, and allowed free access to food and water. The instruments and materials used in the present study were showed in Figure 1. Before the surgery, all instruments, such as stereotaxic frame and glass pipette, were cleaned using 70% ethanol.
1. Surgical Procedures
2. Perfusions and Sections
3. Standard ABC Staining
NOTE: Free floating sections from every third coronal section of the brain were used for visualizing the BDA labeling with standard ABC procedure10.
4. Double Fluorescent Staining for BDA and Basic Neural Elements in Cerebral Cortex
NOTE: In contrast, double fluorescent staining was carried out for observing the correlation of BDA labeling and basic neural elements on the adjacent sections to the above used with streptavidin-AF594 and counterstained with fluorescent Nissl stain AF500/525.
5. Double Fluorescent Staining for BDA and Interneurons in Cerebral Cortex
NOTE: Double fluorescent staining was carried out for observing the correlation of BDA labeling and interneurons on the representative sections in the cortical target with streptavidin-AF594 and PV-immunochemistry.
6. Observation
Survival of 10 days post injection of BDA into the VPM was sufficient for producing intense neural labeling on the corresponding cortical areas ipsilateral to the injection side (Figure 2). Both conventional ABC and fluorescent staining procedures for BDA revealed the similar pattern of neural labeling on the S1, including anterogradely labeled thalamocortical axons and retrogradely labeled corticothalamic neurons (Figure 2C
Selecting a proper tracer is a critical step for a successful neural tracing experiment. In the family of BDA, high molecular weight BDA (10,000 molecular weight) was recommended to be preferentially transported through the anterograde neural pathway in contrast to low molecular weight BDA (3,000 molecular weight)2,3,11,12,13. However, many studies also sugges...
The authors have nothing to disclose.
This study was funded by the National Natural Science Foundation of China (Project Code no. 81373557; no. 81403327).
Name | Company | Catalog Number | Comments |
Biotinylated dextran amine (BDA) | Molecular Probes | D1956 | 10,000 molecular weight |
Streptavidin-Alexa Fluor 594 | Molecular Probes | S32356 | Protect from light |
500/525 green fluorescent Nissl stain | Molecular Probes | N21480 | Protect from light |
Brain stereotaxis instrument | Narishige | SR-50 | |
Freezing microtome | Thermo | Microm International GmbH | |
Confocal imaging | Olympus | FV1200 | |
system | |||
Micro Drill | Saeyang Microtech | Marathon-N7 | |
Sprague Dawley | Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences | SCKX (JUN) 2012-004 | |
Vectastain ABC Kit | Vector Laboratories | PK-4000 | |
superfrost plus microscope slides | Thermo | #4951PLUS-001 | 25x75x1mm |
Photoshop and Illustration | Adobe | CS5 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone