Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
* Wspomniani autorzy wnieśli do projektu równy wkład.
Here, we present a protocol to describe a simple, fast and efficient prion amplification technique, the real-time quaking-induced conversion (RT-QuIC) method.
The RT-QuIC technique is a sensitive in vitro cell-free prion amplification assay based mainly on the seeded misfolding and aggregation of recombinant prion protein (PrP) substrate using prion seeds as a template for the conversion. RT-QuIC is a novel high-throughput technique which is analogous to real-time polymerase chain reaction (PCR). Detection of amyloid fibril growth is based on the dye Thioflavin T, which fluoresces upon specific interaction with ᵦ-sheet rich proteins. Thus, amyloid formation can be detected in real time. We attempted to develop a reliable non-invasive screening test to detect chronic wasting disease (CWD) prions in fecal extract. Here, we have specifically adapted the RT-QuIC technique to reveal PrPSc seeding activity in feces of CWD infected cervids. Initially, the seeding activity of the fecal extracts we prepared was relatively low in RT-QuIC, possibly due to potential assay inhibitors in the fecal material. To improve seeding activity of feces extracts and remove potential assay inhibitors, we homogenized the fecal samples in a buffer containing detergents and protease inhibitors. We also submitted the samples to different methodologies to concentrate PrPSc on the basis of protein precipitation using sodium phosphotungstic acid, and centrifugal force. Finally, the feces extracts were tested by optimized RT-QuIC which included substrate replacement in the protocol to improve the sensitivity of detection. Thus, we established a protocol for sensitive detection of CWD prion seeding activity in feces of pre-clinical and clinical cervids by RT-QuIC, which can be a practical tool for non-invasive CWD diagnosis.
Prion diseases or transmissible spongiform encephalopathies (TSE) are neurodegenerative disorders including Creutzfeldt-Jakob disease (CJD) in humans, bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and goats, and chronic wasting disease (CWD) in cervids 1,2. TSEs are characterized by distinctive spongiform appearance and loss of neurons in the brain. According to the "protein only" hypothesis, prions are mainly composed of PrPSc ('Sc' for scrapie) 3, a misfolded isoform of the host-encoded cellular prion protein, PrPC. PrPSc results from the conversion of PrPC into a conformation enriched in ᵦ-sheets 4,5,6 which can act as a seed to bind and convert other PrPC molecules. The newly generated PrPSc molecules are incorporated into a growing polymer 7,8 which breaks into smaller oligomers, resulting in higher numbers of infectious nuclei. PrPSc is prone to aggregation and is partially resistant to proteases 9,10.
CWD affects wild and farmed elk (Cervus canadensis), mule deer (Odocoileus hemionus), white-tailed deer (WTD; Odocoileus virginianus), moose (Alces alces), and reindeer (Rangifer tarandus tarandus) 11,12,13. It is considered the most contagious prion disease with horizontal transmission favored by cervid interactions and environmental persistence of infectivity 14,15. Unlike other prion diseases where PrPSc accumulation and infectivity are confined to the brain, in CWD these are also found in peripheral tissues and body fluids e.g. saliva, urine, and feces 16,17,18.
Immunohistochemistry is considered the gold standard for CWD diagnosis to detect PrPSc distribution and spongiform lesions 19,20. ELISA and in more rare cases, western blot are also used for CWD diagnostics. Thus, current prion disease diagnosis is mainly based on detecting prions in post-mortem tissues. Ante-mortem diagnosis for CWD is available by taking tonsils or recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsies; however, this procedure is invasive and requires the capture of the animals. Thus, the use of easily accessible specimens, such as urine and feces, would be a practical way for CWD prion detection. However, those excreta harbor relatively low concentrations of prions below the detection limit of current diagnostic methods. Consequently, a more sensitive and high throughput diagnostic tool is needed. In vitro conversion systems, such as protein misfolding cyclic amplification assay (PMCA) 21, amyloid seeding assay, and real-time quaking-induced conversion (RT-QuIC) assay 22,23,24 are very powerful tools to exploit the self-propagating ability of PrPSc to mimic in vitro the prion conversion process and thereby amplify the presence of minute amounts of PrPSc to detectable levels 25,26. The RT-QuIC method, however, takes advantage of the fact that the conversion product enriched in β-sheet secondary structure can specifically bind thioflavin T (Th-T). Therefore, recombinant PrP (rPrP) upon seeded conversion grows into amyloid fibrils which bind Th-T and thus can be detected in real time by measuring the fluorescence of Th-T expressed as relative fluorescence units (RFU) over time. Once monitored, the RFU can be used to evaluate relative seeding activities, and quantitative parameters such as the lag phase. The lag phase represents the time (h) required to reach the threshold, during which rPrP conversion at the early stage of the reaction is below the detection limit of Th-T fluorescence. The end of the apparent lag phase, concomitant to the formation of a sufficient amyloid nucleus (nucleation/elongation), occurs when the Th-T fluorescence exceeds the threshold level and becomes positive. The growth of amyloid fibrils can be detected in real time and the initial PrPSc or seeding activity contained in the sample is amplified by segmentation which generates more seeds. These seeds in turn induce a rapid exponential phase of amyloid fiber growth.
Because this assay is able to detect as low as 1 fg of PrPSc 24, the high sensitivity qualifies this technique to achieve ante mortem or non-invasive diagnosis by detecting PrPSc in various peripheral tissues, excreta or other kinds of specimen harboring low levels of infectivity. RT-QuIC definitely provides advantages over other assays for its reproducibility, practicality, rapidity (less than 50 h) and low costs compared to bioassays. It avoids the technical complexities such as sonication used in PMCA; also, it is performed in a tape-sealed microplate which minimizes the risk of aerosol contamination of each well. The multi-well format enables the analysis of up to 96 samples in the same experiment. To counter the recurrent problem of false positives and spontaneous conversion of rPrP in the in vitro conversion assays the implementation of a threshold (cut-off) in RT-QuIC is very useful. Indeed, based on the results of the negative control (average RFU of negative samples +5 SD 27), a baseline is set up from which discrimination between positive and negative samples can be done. The use of four replicates for each sample can thus help to define a sample as positive when at least 50% of the replicates show a positive signal, i.e. cross the cut-off 28. The homology between seed and substrate is not required in RT-QuIC, as e.g. in a previous study, hamster rPrP was found to be a more sensitive substrate compared to the homologous substrate in human PrPvCJD seeded and sheep scrapie seeded reactions 29. Hamster-sheep chimeric rPrP was also suggested to be a more well-suited substrate than human rPrP to detect human variant CJD prions 30. Thus, the use of rPrP substrates from different species is very common in this assay. This assay has been successfully applied to several prion diseases, such as sporadic CJD 31,32,33, genetic prion diseases 34, BSE 35,36,37, scrapie 23,36, and CWD 38,39,40,41,42. Studies using processed cerebrospinal fluid, whole blood, saliva, and urine as seeds in RT-QuIC were all successful to detect PrPSc 38,39,40,41,42. To foster the detection ability in samples such as blood plasma that may contain inhibitors of amyloid formation, Orrú et al. (2011) developed a strategy to remove potential inhibitors of amyloid formation by combing PrPSc immunoprecipitation (IP) step and RT-QuIC, named "enhanced QuIC" assay (eQuIC). In addition, a substrate replacement step was employed after ~24 h of reaction time in order to improve the sensitivity. Ultimately, as low as 1 ag of PrPSc was detectable by eQuIC 30.
In order to purify feces extracts and remove possible assay inhibitors in feces, fecal samples collected at preclinical and clinical stages from elk upon experimental oral infection were homogenized in buffer containing detergents and protease inhibitors. The feces extracts were further submitted to different methodologies to concentrate PrPSc in the samples utilizing protein precipitation via sodium phosphotungstic acid (NaPTA) precipitation. The NaPTA precipitation method, first described by Safar et al.43, is used to concentrate PrPSc in test samples. The incubation of NaPTA with the sample results in preferential precipitation of PrPSc rather than PrPC. However, the molecular mechanism is still unclear. This step also helped containing and preventing the spontaneous conversion of rPrP, which is observed in some cases. Finally, the feces extracts were tested by optimized RT-QuIC using mouse rPrP (aa 23-231) as a substrate and including substrate replacement in the protocol to improve the sensitivity of detection.
The results here demonstrate that this improved method can detect very low concentrations of CWD prions and increases the sensitivity of detection and specificity in fecal samples compared to a protocol without NaPTA precipitation and substrate replacement. This method potentially can be applied to other tissues and body fluids and can be of great use for CWD surveillance in wild and captive cervids.
1. RT-QuIC Using Fecal Material
2. Purification of Recombinant Prion Protein (rPrP)
The CWD fecal extracts prepared at 10% (w/v) were able to seed RT-QuIC reaction, yet the sensitivity of detection was low 27. Using a specific buffer for fecal homogenization was a critical step to avoid high background fluorescence in RT-QuIC reactions concomitant to the use of mouse rPrP substrate rather than deer rPrP which allowed to get more specific results 27. The addition of NaPTA precipitation reduced the spontaneous conversion of r...
RT-QuIC was previously employed to detect CWD prions in urine and fecal extracts of orally infected white-tailed deer and mule deer 38. The system shown in this manuscript is an adapted method of the RT-QuIC assay. Additional steps were incorporated into the "classical" RT-QuIC assay to improve the detection and sensitivity of the assay for CWD prions in fecal material of infected animals.
The low sensitivity of detection in feces extracts led us to the improvem...
The authors have nothing to disclose.
We are grateful to Dr. Byron Caughey (NIH Rocky Mountain Laboratories) for providing training and the cervid PrP bacterial expression plasmid. SG is supported by the Canada Research Chair program. We acknowledge funding for this research to SG from Genome Canada, Alberta Prion Research Institute and Alberta Agriculture and Forestry through Genome Alberta, and the University of Calgary in support of this work. We acknowledge a research grant from the Margaret Gunn Foundation for Animal Research.
Name | Company | Catalog Number | Comments |
Materials | |||
Acrodisc seringe filters | PALL | 4652 | |
amicon Ultra-15 Centrifugal filter Unit | Millipore | UCF901024 | |
BD 10 ml seringe | VWR | CA75846-842 | |
Chloramphenicol | Sigma-Aldrich | C0378 | |
Corning bottle-top vacuum filters | Sigma-Aldrich | 431118 | |
Ethylenediaminetetraacetic acid (EDTA) | Sigma-Aldrich | E4884 | |
gentleMACS M Tube | Miltenyi Biotec | 130-093-236 | |
Guanidine hydrochloride | Sigma-Aldrich | G4505 | |
Imidazole | Sigma-Aldrich | I5513 | |
Isopropanol | Sigma-Aldrich | I9516 | |
Kanamycin sulfate | Sigma-Aldrich | 60615 | |
Luria-Bertani (LB) broth | ThermoFisher Scientific | 12780029 | |
Magnesium chloride | Sigma-Aldrich | M9272 | |
N2 supplement (100X) | ThermoFisher Scientific | 15502048 | |
N-lauroylsarcosine sodium salt (sarkosyl) | Sigma-Aldrich | ML9150 | |
Nanosep centrifugal devices with omega membrane 100K | PALL | OD100C34 | |
Nunc sealing tapes | ThermoFisher Scientific | 232702 | |
Parafilm M | VWR | 52858-000 | |
phenylmethylsulfonyl fluoride (PMSF) | Sigma-Aldrich | P7626 | |
Protease inhibitor tablet | Roche | 4693159001 | |
Sodium chloride | Sigma-Aldrich | S3014 | |
Sodium deoxycholate | Sigma-Aldrich | D6750 | |
Sodium dodecyl sulfate (SDS) | Calbiochem | 7910-OP | |
sodium phosphate | Sigma-Aldrich | 342483 | |
Sodium phosphate dibasic anhydrous | Sigma-Aldrich | S9763 | |
Sodium phosphate monobasic monohydrate | Sigma-Aldrich | S9638 | |
Sodium phosphotungstate hydrate (NaPTA) | Sigma-Aldrich | 496626 | |
Thioflavin T | Sigma-Aldrich | T3516 | |
Tris-Hydroxy-Methyl-Amino-Methan (Tris) | Sigma-Aldrich | T6066 | |
Triton-100 | Calbiochem | 9410-OP | |
Tween 20 | Sigma-Aldrich | P7949 | |
Name | Company | Catalog Number | Comments |
Commercial buffers and solutions | |||
BugBuster Master Mix | Nogagen | 71456-4 | |
Ni-NTA superflow | Qiagen | 1018401 | |
Phosphate-buffered saline (PBS) pH 7.4 (1X) | Life Technoligies | P5493 | |
UltraPure Distilled Water | Invitrogen | 10977015 | |
Name | Company | Catalog Number | Comments |
Standards and commercial kits | |||
Express Autoinduction System 1 | Novagen | 71300-4 | |
Pierce BCA Protein Assay Kit | ThermoFisher Scientific | 23227 | |
Name | Company | Catalog Number | Comments |
Equipment setup | |||
AKTA protein purification systems FPLC | GE Healthcare Life Sciences | ||
Beckman Avanti J-25 Centrifuge | Beckman Coulter | ||
Beckman rotor JA-25.50 | Beckman Coulter | ||
Beckman rotor JA-10 | Beckman Coulter | ||
FLUOstar Omega microplate reader | BMG Labtech | ||
gentleMACS Dissociator | Miltenyi Biotec | 130-093-235 | |
Name | Company | Catalog Number | Comments |
Sofware | |||
MARS Data Analysis | BMG Labtech | ||
GraphPad Prism6 | GraphPad software |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone