JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

This protocol describes techniques for evaluating chemical cross-linking of the rabbit sclera using second harmonic generation imaging and differential scanning calorimetry.

Streszczenie

Methods to strengthen tissue by introducing chemical bonds (non-enzymatic cross-linking) into structural proteins (fibrillar collagens) for therapy include photochemical cross-linking and tissue cross-linking (TXL) methods. Such methods for inducing mechanical tissue property changes are being employed to the cornea in corneal thinning (mechanically weakened) disorders such as keratoconus as well as the sclera in progressive myopia, where thinning and weakening of the posterior sclera occurs and likely contributes to axial elongation. The primary target proteins for such tissue strengthening are fibrillar collagens which constitute the great majority of dry weight proteins in the cornea and sclera. Fortuitously, fibrillar collagens are the main source of second harmonic generation signals in the tissue extracellular space. Therefore, modifications of the collagen proteins, such as those induced through cross-linking therapies, could potentially be detected and quantitated through the use of second harmonic generation microscopy (SHGM). Monitoring SHGM signals through the use of a laser scanning microscopy system coupled with an infrared excitation light source is an exciting modern imaging method that is enjoying widespread usage in the biomedical sciences. Thus, the present study was undertaken in order to evaluate the use of SHGM microscopy as a means to measure induced cross-linking effects in ex vivo rabbit sclera, following an injection of a chemical cross-linking agent into the sub-Tenon's space (sT), an injection approach that is standard practice for causing ocular anesthesia during ophthalmologic clinical procedures. The chemical cross-linking agent, sodium hydroxymethylglycinate (SMG), is from a class of cosmetic preservatives known as formaldehyde releasing agents (FARs). Scleral changes following reaction with SMG resulted in increases in SHG signals and correlated with shifts in thermal denaturation temperature, a standard method for evaluating induced tissue cross-linking effects.

Wprowadzenie

Progressive myopia is postulated to be treatable through non-enzymatic scleral cross-linking (photochemical and/or chemical), which makes sense given that blocking collagen enzymatic cross-linking can increase experimental form deprivation (FD)-induced myopia1. Elsheikh and Phillips2 recently discussed the feasibility and potential of using standard ultraviolet-A irradiation (UVA)-riboflavin mediated photochemical cross-linking (also known as the Dresden protocol), abbreviated here as (riboflavin CXL) for posterior scleral stabilization to halt axial elongation in myopia. This photochemical method has been successfully used for treating destabilization of the anterior globe surface (i.e., the bulging cornea) seen in keratoconus and post-LASIK keratectasia. However, application of this CXL protocol for the sclera is hindered by issues related to difficulties in accessing the posterior sclera with an ultraviolet (UV) light source, as well as the need to modify a much greater tissue surface area. That being said, the CXL approach has been used to halt axial elongation in visually form deprived rabbits (by tarsorrhaphy), although multiple regions of posterior sclera required multiple separate irradiation zones in that study3. By contrast, injection of a chemical stabilizing agent (i.e., cross-linking agent) via the sT space could represent a simpler way to modify the posterior sclera, avoiding the need for introducing a UV light source. This injection technique is well known as a useful way of inducing ocular anesthesia during ophthalmologic procedures such as cataract surgery4,5,6. Wollensak7 has described previously the use of an sT injection using glyceraldehyde (a chemical cross-linking agent similar in concept to the formaldehyde releasing agents (FARs) described in this study) to stiffen the rabbit sclera and genipin has been shown to limit axial length in FD guinea pigs8,9. These investigators have demonstrated a clear advantage of using a soluble chemical agent over the photochemical CXL technique. Thus, scleral cross-linking using an injectable chemical agent of some type, including the FARs (i.e., TXL)10, could provide a feasible treatment method to halt the progression of scleral elongation seen in myopia.

In the protocols presented here, we use a chemical cross-linking solution of sodium hydroxymethylglycinate (SMG), delivered via sT injection to the sclera of cadaveric rabbit eyes. We have implemented similar protocols previously for topical chemical cross-linking in the cornea. Notably in those previously reported studies, concentration dependent cross-linking effects could be obtained using SMG, with an effect range spanning well above that achievable with photochemical CXL as determined by thermal denaturation analysis11.

Here we describe protocols to assess the cross-linking effect of SMG delivered via sT injections to scleral tissue, thermal denaturation using Differential Scanning Calorimetry (DSC), and Second Harmonic Generation Microscopy (SHGM).

Using differential scanning calorimetry (DSC), also known as thermal analysis, a thermal denaturation transition is measured, which for scleral tissue is predominately guided by the properties of the fibrillar collagens, since they constitute the bulk majority of protein. This method evaluates the stability of collagen molecular structure and the cross-linked bonds that stabilize the collagen fibrils, the principal tertiary protein structure. During heating in the DSC, a critical transition temperature is achieved that results in denaturation of the collagen molecule, resulting in uncoiling of the triple helix, a process that forms what is commonly known as gelatin. This thermal denaturation disrupts hydrogen bonds along the collagen molecule and can be shifted to higher temperatures through induced cross-linking methods12,13. This method has been used for many decades, particularly in the biomaterials industry and for processes that include leather-making. However, this method requires extraction of the sclera tissue and therefore can only be useful as an ex vivo technique.

Second-harmonic generation microscopy (SHGM) is based on the non-linear optical properties of particular materials, with non-centrosymmetric molecular environments. In such materials, intense light, for example light produced by lasers, generates SHG signals, in which the incident light is doubled in frequency. Biological materials that are known to create SHG signals are collagen, microtubules, and muscle myosin. For example, collagen excited with an infrared light of 860 nm wavelength will emit an SHG signal in the visible range with 430 nm wavelength. Second harmonic generation (SHG) signal imaging is a promising method for evaluating therapeutic collagen cross-linking. It has been known for more than 30 years that collagen fibrils in tissues emit SHG signals14. However, only recently could high resolution images be obtained15 in a variety of tissues, including tendon16, skin, cartilage17, blood vessels18, and in collagen gels19.

Based on this knowledge, this study evaluates the SHG signal changes induced in the sclera through SMG chemically induced cross-linking of collagen. The results indicate that SMG modification of the sclera increases the SHG signals produced from tissue collagen fiber bundles (the higher order quaternary structure comprised of collagen fibrils) and also produces a structural morphologic change in the collagen fiber network, reflected in fiber bundle "straightening."

Access restricted. Please log in or start a trial to view this content.

Protokół

All procedures were performed using cadaveric rabbit eyes within intact outbred rabbit heads. All Institutional and National guidelines for the care and use of laboratory animals were followed.

1. Preparation of Solutions

  1. SMG preparation for TXL:
    1. Prepare 1 mL of 0.2 M concentration of sodium bicarbonate solution (NaHCO3) solution using 0.0165g of NaHCO3 powder dissolved in 1 mL of the distilled water.
    2. Dissolve 0.1016 mg of powdered sodium hydroxymethylglycinate (SMG) in 1 mL of the distilled water to get a final concentration of 800 mM SMG. Adjust sodium bicarbonate solution to a final concentration of 0.1 M NaHCO3 and 400 mM SMG. Concentrations of SMG depending on the cross-linking effect desired. In the protocol described here we used 40, 100, and 400 mM SMG.

2. SubTenon's Injection for TXL using SMG

  1. Fill two 1 mL insulin syringes (25G needles) with 400 µL control and SMG solution, respectively.
  2. Place the rabbit's head in a profile plane with the help of a cushion. Styrofoam or a paper stack can be used to fix the head in an optimal position.
  3. Retract the eyelids with a pediatric eye speculum.
  4. Measure the initial intraocular pressure (IOP) using an applanation tonometry device.
  5. Mark the site of intended injection on the upper middle part of the limbus with a tissue marker.
  6. Retract the conjunctiva surrounding the site of injection with a conjunctival forceps (or any forceps with serrated round tip) and insert the needle through the conjunctiva, entering Tenon's capsule just slightly beyond the marked limbal site (i.e., 2-3 mm from the limbus). A small incision in the conjunctiva can also be made with iris scissors in order to facilitate the passage of the needle through Tenon's capsule.
  7. Once within Tenon's capsule, make sure that the needle is freely mobile by moving it side-to-side. During this time, the globe should not move. This confirms proper placement of the needle above the sclera in the sub-Tenon's (sT) space.
  8. Inject the solution from the syringe and discard the needle. Immediately following injection, the fluid will accumulate in the sT space creating an anterior bulge seen through the conjunctiva (i.e., chemosis).
  9. Repeat the IOP measurement in order to confirm that it did not change due to an inadvertent perforation of the globe.
  10. Remove the lid speculum, and perform digital massage through the closed eyelids for about 2-3 min.
  11. Leave the head for an incubation period of 3.5 h (room temperature = 18 °C), prior to moving to the next step.

3. Tissue Preparation

  1. Retract the eyelids using the eyelid speculum in order to optimize access to the globe. Select the optimally sized speculum according to the size of the eye.
  2. Separate the conjunctiva surrounding the limbus. If it has already been incised near the site of injection, circumferentially expand the borders so it would contain an inoculum size of approximately 1x1 cm.
  3. Cut the extra-ocular muscles at their sites of scleral insertion.
  4. Elevate the eyeball with forceps, pushing it from the posterior side. This provides access to the posterior globe and will facilitate cutting of the optic nerve with ophthalmic artery and vein located near the posterior pole of the globe.
  5. Cut out the corneoscleral complex, with the outer border including the marked injection site. The stain should still be visible on the remaining part of the sclera.
  6. Remove the corpus vitreus and all layers attached to the inner side of the sclera by applying traction with tissue forceps.
    NOTE: Further steps depend on the following procedures being performed: 4.-DSC analysis, 5.-SHG microscopy.

4. For Regional DSC Analysis

  1. For the treated eye: cut out four scleral sectors from the remaining scleral cup with the scissors so that the site of the injection is located in the upper sector and aligned centrally. Cut the remaining 3 sectors from both lateral sides (i.e., nasal and temporal), and the bottom.
    NOTE: the numbering of the sectors (1-4) which are further divided into squares (1-16) is demonstrated in Figure 1A.
  2. Cut the scleral sectors (1-4) into smaller squares (1-16) of approximately 4 x 4 mm each. Sector 1 should be divided into 9 squares (make the exact site of injection an individual square [square 2]). Divide sectors 2 and 3 into 2 squares each (squares 10-11 and 12-13) and sector 4 into 3 squares (squares 14-16).
  3. Assign a number to each square, as shown in Figure 1A, in order to localize the distance of the analyzed tissue from the location of the injected area.
  4. For the control eye: after dividing the tissue into four scleral sectors (similar to the treated tissue) cut out square pieces of tissue from the following locations: 3 squares from the top sector (sector 1), 1 from each side (sectors 2 and 3), and 1 from the bottom sector (sector 4).
  5. Scrape off the remaining retinal and choroidal layers and wash twice with fresh PBS each time, leaving the pieces submerged in solution for approximately 10 s at a time.

5. For SHG Imaging

  1. Cut the upper part of the sclera using scissors to create a 1 x 1 cm area with the site of injection aligned centrally.
  2. Scrape off the remaining retinal and choroid layers and wash twice with fresh PBS each time leaving the pieces in solution for approximately 10 s.
  3. Place the tissue in 1 mL tubes filled with PBS solution for transportation to the imaging facility. All the procedures, following the incubation time and beginning with the dissection of the eyeball should be performed within an hour.

6. Microscopy Protocol

NOTE: This protocol for imaging back-scattered SHG signal from collagen of sclera tissue is tailored for the laser scanning microscope.

  1. Microscopy set up
    1. To maximize the signal and resolution when performing SHG microscopy use an objective lens optimize to transmit infrared light and with a high numerical aperture (NA). Our objective is Nikon Apo LWD 25x/NA1.1 water immersion.
    2. Adjust the correction collar of the lens to match the depth of the sample, in this case that is the thickness of the coverslip, 0.17 millimeters.
    3. Mount the 25x objective lens and add a generous amount of lubricating water-based gel to cover the imaging surface before mounting the sample. The water-based gel will not evaporate during the experiment and hence will maintain image quality.
    4. Place the scleral tissue from a 1 mL tube with PBS without drying between two 25-mm round coverslips (episcleral side down) providing maximal contact between the episclera and the coverslip surface.
      NOTE: The tissue can also be placed uncovered on the coverslip. A good amount of PBS should keep the tissue hydrated during imaging. In this case, add the tissue piece and the PBS after assembling the cellchamber.
    5. Assemble the cell chamber by placing a 25-mm round coverslip, single or in a sandwich technique, on the bottom part of the chamber and screw the top part down in order to create a sealed round chamber. Do not screw down tightly when a top coverslip is used, in order to avoid artificially flattening and damage the tissue.
    6. Mount the cell chamber with the tissue sample on the microscope stage.
    7. Set the microscope for eye view with transmitted light on.
    8. Position the stage and adjust the height of the objective such that the lower surface of the sample is in focus, as determined by bright field inspection through the eye piece.
    9. Turn off all lights except the computer monitor and block as much light from the monitor as possible with aluminum foil sheets draped on the microscope stage. Minimizing any stray light reaching the detectors will ensure low-noise acquisition, as the GaAsP NDD detectors have high sensitivity.
    10. In the Ti Pad panel of the software, check that the lens definition is correct.
    11. In the A1 Compact GUI panel, choose the IR laser for imaging, select the NDD detectors and choose the DAPI channel that is equipped with a 400-450 nm bandpass filter.
    12. In the A1 MP GUI panel, set the wavelength of the infrared laser to 860 nm and open the shutter.
    13. Set laser scanning conditions in the A1 Compact GUI panel as follows. Select: (a) Galvano scanner, (b) Unidirectional scanning, (c) Pixel dwell time 6.2 µs, (d) Frame size 1,024 x 1,024 pixels, (e) Line averaging 2x
      NOTE: The Galvano scanner and unidirectional scanning ensures precise point by point alignment. A size of 1,024 x 1,024 for the full field of view translates into a pixel size of 0.5 μm /pixel. Line averaging will reduce the shot noise in the image.
    14. Set imaging conditions in A1 Compact GUI panel by adjusting laser power and detector gain. Open the Look Up Table panel (LUTs) that displays a histogram of pixel intensity values in the current image. Turn on live imaging in “Find” mode and maximize the detected range of pixel values by adjusting laser power and detector gain. Avoid saturation. Typical values are 2.5% laser power, from a total of 2.35 W at 860 nm, and 100 HV (detector gain).
    15. NOTE: For this setup, the laser power measured with an internal power meter is 5.2 mW. Every time an experiment is performed, re-adjust the laser percentage such that the internal power measurement is constant at 5.2 mW between imaging sessions. Care should be taken when setting laser power. The Chameleon II laser is a 3 W laser at 800 nm and a 10% or higher power could potentially induce tissue damage.
  2. Image acquisition
    1. In preview mode, scan the tissue area using the XYZ Overview tool.
    2. Set the imaging to lower resolution (256 x 256 pixels and no line averaging) to speed up the acquisition of images in this mode.
    3. Capture 5 x 5, 3 x 3, or single fields of view to cover the entire surface of the tissue. At each location, before the overview capture, turn on the live "Scan" mode and bring the tissue into focus. Note that different regions of the tissue will have slightly different positions in the axial direction.
    4. Find a flat area where the collagen fibers are seen in the entire field of view and double-click that position in the overview tool to move the stage to that particular location.
    5. Turn on live "Scan" mode, adjust the Z position of the objective such that the bottom plane is in focus and, in the Ti Pad, use the Z drive to move the optical plane 10-15 μm above this bottom layer.
    6. Acquire an image at high resolution with 1,024 x 1,024 pixels and 2x line averaging, using the "Capture" button.
    7. Save the location in the XYZ Overview using the "+" button. This ensures that the same area of tissue is not recaptured.
    8. For each piece of tissue capture 10 images of non-overlapping fields of view.

7. DSC Protocol

Note: Proceed to this step as soon as tissue preparation is complete, for regional DSC analysis, or after tissue imaging when SHGM is performed.

  1. Prepare DSC pans, weighed and labeled.
    NOTE: This step should be done before tissue dissection in order to minimize tissue desiccation.
  2. Dry each scleral square with an absorbent tissue and lay it flat on the bottom of a DSC pan using toothed forceps.
  3. Weigh the pan with the tissue inside and lid crimped and covered to obtain the tissue wet weight (mass of the samples should be in the range of 5 to 11 mg).
    Note: Seal each pan using the crimper before proceeding to the next tissue sample. The pans are hermetically sealed, preventing any water loss prior to thermal analysis.
  4. Once the sample is crimped, place it on its designated location on the DSC tray. There should be 6 samples for the control and 16 for the treated eye.
  5. Create a method using instrument managing software, specifying the weight of the tissue, and run the thermal analysis using the following parameters: Temperature range of 40 to 80 °C, Heating rate: 1 °C/min, Heat flow: 17.37 mW, Gas (N2) flow: 19.8 mL/min, Gas pressure: 2.2 bar.
  6. Once completed, analyze the data for each sample by extracting the transition temperature peak at which thermal denaturation occurs using the instrument managing software.

8. Image Analysis

  1. SHG Signal
    1. Select at least 5-10 of the most representative images from each treatment and its control, such that the area of the image is occupied by mostly collagen fibers.
    2. Upload each image in ImageJ software and measure the average pixel intensity by selecting Analyze> Measure for the active image.
    3. The values extracted are reported as the mean pixel intensity and can also be shown by plotting the histogram of intensities by selecting from the menu Analyze > Histogram.
    4. Using an Excel sheet, create a table to document all measured data accordingly to the sample ID.
    5. Calculate the mean and standard deviation of pixel intensity for each treatment and control condition.
    6. Using student's t-test, compare differences for all pairwise comparisons of concentrations (i.e., 40 mM SMG vs. 0 and 400 mM SMG vs. 0). [P≤0.05].
  2. Waviness
    1. Select an image that displays collagen fibers. At least 10 images per sample should be analyzed (including a control sample for each concentration - at least 40 in total).
    2. Open ImageJ>Plugins> NeuronJ. NeuronJ requires prior installation.
    3. Upload all imagesby dragging into an opened NeuronJ window.
    4. Create tracing lines along the fibers, following the contour of the fibril with the mouse (pen drawing tablets could be used), click M to measure the distance of total fiber length.
    5. Select "Option" to draw a tangential straight line and connect the beginning and the end of the previously drawn fiber contour. Now click M to measure the end-to-end length.
    6. Repeat the same procedure on at least 10 fibrils per image.
    7. Collect those two measurements from each of 10 fibrils and input the data into an excel spreadsheet, expressing total fiber length (contour) and end-to-end length (straight connecting line) as Length [curve] and Length [linear], respectively.
    8. Calculate the waviness index (W) using the formula: W= Length [curve]/ Length [linear].
    9. Calculate the % of waviness comparing data from the images of treated samples(SMG) with the images from control samples using the formula: (W[SMG] - 1) / ( W[control] - 1 )
    10. Perform a pairwise t-test for waviness index (W) in order to determine statistical differences (p-values) of collagen fiber morphology between different treatment conditions and control.

Access restricted. Please log in or start a trial to view this content.

Wyniki

Thermal denaturation temperature (Tm) as an assay method to evaluate TXL cross-linking effect: A total of 16 pairs of rabbit eyes were used in these experiments for the TXL procedure.As an initial part of this study, the localization of cross-linking effect induced by a single injection of SMG cross-linking agent via sT space in the cadaveric rabbit head was evaluated. This type of experiment has relevance to the clinical treatment of patients, since injections in more th...

Access restricted. Please log in or start a trial to view this content.

Dyskusje

Conducted experiments have shown evidence supporting the use of SHG signal microscopy as a method for evaluation of collagen cross-linking effects in sclera, raising the future possibility of using this technique as a monitoring tool for cross-linking treatments that target collagen proteins. Of note, an instrument already is in clinical use that can potentially capture this SHG signal. Although this instrument was primarily designed for imaging skin human dermis, it has been used successfully to image cornea and sclera<...

Access restricted. Please log in or start a trial to view this content.

Ujawnienia

The authors have nothing to disclose.

Podziękowania

The authors thank Tongalp Tezel, MD, for consultation regarding sT injection; Theresa Swayne, PhD, for consultation regarding SHG microscopy; and Jimmy Duong from the Design and Biostatistics Resource and the Biostatistical core facility of the Irving Institute at Columbia University Medical Center.

Supported in part by Research to Prevent Blindness and by National Institutes of Health Grants NCRR UL1RR024156, NEI P30 EY019007, NCI P30 CA013696, and NEI R01EY020495 (DCP). Columbia University owns related intellectual property: US issued patents no: 8,466,203 and no: 9,125,856. International patent pending: PCT/US2015/020276.

Images were collected in the Confocal and Specialized Microscopy Shared Resource of the Herbert Irving Comprehensive Cancer Center at Columbia University, supported by NIH grant #P30 CA013696 (National Cancer Institute). The confocal microscope was purchased with NIH grant #S10 RR025686.

Access restricted. Please log in or start a trial to view this content.

Materiały

NameCompanyCatalog NumberComments
MILLI-Q SYNTHESIS A10 120VEMD Millipore, Massachusetts, USADouble distilled, deionized water. - protocol step 1.1.1
Sodium hydroxymethylglycinate Tyger Chemicals Scientific, Inc. Ewing, NJ, USACrosslinking reagent - protocol step 1.1.2
Injection needle with luer-lock syringeBD Eclipse, NJ, USASyringe for sub tenon injection. - protocol step 2.1
Rabbit headLa Granja poultryOutbredRabbit head separated and delivered within 1 hour postmortem. - protocol step 2.2
Tono-pen Reichter Technologies Depew, NYIOP measurements - protocol step 2.4
DSC 6000 AutosamplerPerkin-Elmer Waltham, MA, USAThermal denaturation analyzer - protocol step 7.4
Pyris software Perkin-Elmer, Waltham, MA, USAVer 11.0 protocol step 7.5
CFI75 Apochromat LWD 25X/1.10 W MPNikon Instruments, Melville, NY, USAA water immersionn objective with high IR transmittance with a working distance of 2.0 mm - protocol step 8.1.1.
GenTeal Alcon, Fort Worth, TX B000URVDQ8Water-based gel used as objective immersion medium instead of water to prevent evaporation - 8.1.1
Chameleon Vision II Coherent, Santa Clara,CA, USATi:Sapphire pulsed laser with a 140 fs pulse width at 80 MHz and a tunable range from 680 nm to 1080 nm. - protocol step 8.1.11
AttoFluor cell chamberThermo Fisher Scientific IncA7816Fixation of the cover slip - protocol step 8.1.3
25-mm round coverslips, #1.5Neuvitro Corporation, Vancouver, WA, USAGG-25-1.5protocol step 8.1.3
Eclipse Ti-ENikon Instruments, Melville, NY, USAprotocol step 8.1.4.
Non-descanned (NDD) GaAsP detectorNikon Instruments, Melville, NY, USAEquipped with a 400-450 nm band pass filter - protocol step 8.1.7
A1R-MP laser scanning systemNikon Instruments, Melville, NY, USACompatible with infrared (IR) multi-photon excitation. - protocol step 8.1.8
NIS Elements softwareNikon Instruments, Melville, NY, USAVer 4.3refered to as "software" in the text - protocol step 8.1.9
Fiji/ImageJNational Institute of Health protocol step 9.1.2
NeuronJEric Meijering, Erasmus University Medical Center, Rotterdam, The Netherlandshttps://imagescience.org/meijering/software/neuronj/, for protocol step 9.2.2
Microsoft Excel Microsoft Corporation, Redmond, WA, USAVer 14protocol step 9.2.8

Odniesienia

  1. McBrien, N. A., Norton, T. T. Prevention of collagen crosslinking increases form-deprivation myopia in tree shrew. Exp Eye Res. 59 (4), 475-486 (1994).
  2. Elsheikh, A., Phillips, J. R. Is scleral cross-linking a feasible treatment for myopia control? Ophthalmic Physiol Opt. 33 (3), 385-389 (2013).
  3. Dotan, A., et al. Scleral cross-linking using riboflavin and ultraviolet-a radiation for prevention of progressive myopia in a rabbit model. Exp Eye Res. 127, 190-195 (2014).
  4. Canavan, K. S., Dark, A., Garrioch, M. A. Sub-Tenon's administration of local anaesthetic: a review of the technique. Br J Anaesth. 90 (6), 787-793 (2003).
  5. Guise, P. Sub-Tenon's anesthesia: an update. Local Reg Anesth. 5, 35-46 (2012).
  6. Ahn, J. S., et al. A sub-Tenon's capsule injection of lidocaine induces extraocular muscle akinesia and mydriasis in dogs. Vet J. 196 (1), 103-108 (2013).
  7. Wollensak, G., Redl, B. Gel electrophoretic analysis of corneal collagen after photodynamic cross-linking treatment. Cornea. 27 (3), 353-356 (2008).
  8. Liu, T. X., Wang, Z. Collagen crosslinking of porcine sclera using genipin. Acta Ophthalmol. 91 (4), e253-e257 (2013).
  9. Wang, M., Corpuz, C. C. Effects of scleral cross-linking using genipin on the process of form-deprivation myopia in the guinea pig: a randomized controlled experimental study. BMC Ophthalmol. 15, 89(2015).
  10. Babar, N., et al. Cosmetic preservatives as therapeutic corneal and scleral tissue cross-linking agents. Invest Ophthalmol Vis Sci. 56 (2), 1274-1282 (2015).
  11. Kim, S. Y., et al. Evaluating the Toxicity/Fixation Balance for Corneal Cross-Linking With Sodium Hydroxymethylglycinate (SMG) and Riboflavin-UVA (CXL) in an Ex Vivo Rabbit Model Using Confocal Laser Scanning Fluorescence Microscopy. Cornea. 35 (4), 550-556 (2016).
  12. da Cruz, L. G., Moraes, G. D. A., Nogueira, R. F., Morandim-Giannetti, A. D. A., Bersanetti, P. A. DSC characterization of rabbit corneas treated with Stryphnodendron adstringens (Mart.) Coville extracts. Journal of Thermal Analysis and Calorimetry. , (2017).
  13. Bersanetti, P. A., et al. Characterization of Rabbit Corneas Subjected to Stromal Stiffening by the Acai Extract (Euterpe oleracea). Curr Eye Res. 42 (4), 528-533 (2017).
  14. Freund, I., Deutsch, M. Second-harmonic microscopy of biological tissue. Opt Lett. 11 (2), 94(1986).
  15. Campagnola, P. J., Loew, L. M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol. 21 (11), 1356-1360 (2003).
  16. Williams, R. M., Zipfel, W. R., Webb, W. W. Interpreting second-harmonic generation images of collagen I fibrils. Biophys J. 88 (2), 1377-1386 (2005).
  17. Mansfield, J., et al. The elastin network: its relationship with collagen and cells in articular cartilage as visualized by multiphoton microscopy. J Anat. 215 (6), 682-691 (2009).
  18. Tsamis, A., Krawiec, J. T., Vorp, D. A. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J R Soc Interface. 10 (83), 20121004(2013).
  19. Raub, C. B., et al. Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys J. 92 (6), 2212-2222 (2007).
  20. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 9 (7), 676-682 (2012).
  21. Meijering, E., et al. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A. 58 (2), 167-176 (2004).
  22. Zyablitskaya, M., et al. Evaluation of Therapeutic Tissue Crosslinking (TXL) for Myopia Using Second Harmonic Generation Signal Microscopy in Rabbit Sclera. Invest Ophthalmol Vis Sci. 58 (1), 21-29 (2017).
  23. Steven, P., Muller, M., Koop, N., Rose, C., Huttmann, G. Comparison of Cornea Module and DermaInspect for noninvasive imaging of ocular surface pathologies. J Biomed Opt. 14 (6), 064040(2009).
  24. Han, M., Giese, G., Bille, J. F. Second harmonic generation imaging of collagen fibrils in cornea and sclera. Optics Express. 13 (15), 5791-5797 (2005).
  25. Wang, B. G., Konig, K., Halbhuber, K. J. Two-photon microscopy of deep intravital tissues and its merits in clinical research. J Microsc. 238 (1), 1-20 (2010).
  26. Teng, S. W., et al. Multiphoton autofluorescence and second-harmonic generation imaging of the ex vivo porcine eye. Invest Ophthalmol Vis Sci. 47 (3), 1216-1224 (2006).
  27. Rao, R. A., Mehta, M. R., Leithem, S., Toussaint, K. C. Jr Quantitative analysis of forward and backward second-harmonic images of collagen fibers using Fourier transform second-harmonic-generation microscopy. Opt Lett. 34 (24), 3779-3781 (2009).
  28. Morishige, N., Petroll, W. M., Nishida, T., Kenney, M. C., Jester, J. V. Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals. J Cataract Refract Surg. 32 (11), 1784-1791 (2006).
  29. Aptel, F., et al. Multimodal nonlinear imaging of the human cornea. Invest Ophthalmol Vis Sci. 51 (5), 2459-2465 (2010).
  30. Winkler, M., et al. Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics. Invest Ophthalmol Vis Sci. 52 (12), 8818-8827 (2011).
  31. Morishige, N., Takagi, Y., Chikama, T., Takahara, A., Nishida, T. Three-dimensional analysis of collagen lamellae in the anterior stroma of the human cornea visualized by second harmonic generation imaging microscopy. Invest Ophthalmol Vis Sci. 52 (2), 911-915 (2011).
  32. Gore, D. M., et al. Two-photon fluorescence microscopy of corneal riboflavin absorption. Invest Ophthalmol Vis Sci. 55 (4), 2476-2481 (2014).
  33. Park, C. Y., Lee, J. K., Chuck, R. S. Second Harmonic Generation Imaging Analysis of Collagen Arrangement in Human Cornea. Invest Ophthalmol Vis Sci. 56 (9), 5622-5629 (2015).
  34. Quantock, A. J., et al. From nano to macro: studying the hierarchical structure of the corneal extracellular matrix. Exp Eye Res. 133, 81-99 (2015).
  35. Morishige, N., et al. Quantitative analysis of collagen lamellae in the normal and keratoconic human cornea by second harmonic generation imaging microscopy. Invest Ophthalmol Vis Sci. 55 (12), 8377-8385 (2014).
  36. Morishige, N., et al. Second-harmonic imaging microscopy of normal human and keratoconus cornea. Invest Ophthalmol Vis Sci. 48 (3), 1087-1094 (2007).
  37. Steven, P., Hovakimyan, M., Guthoff, R. F., Huttmann, G., Stachs, O. Imaging corneal crosslinking by autofluorescence 2-photon microscopy, second harmonic generation, and fluorescence lifetime measurements. J Cataract Refract Surg. 36 (12), 2150-2159 (2010).
  38. Bueno, J. M., et al. Multiphoton microscopy of ex vivo corneas after collagen cross-linking. Invest Ophthalmol Vis Sci. 52 (8), 5325-5331 (2011).
  39. McQuaid, R., Li, J. J., Cummings, A., Mrochen, M., Vohnsen, B. Second-Harmonic Reflection Imaging of Normal and Accelerated Corneal Crosslinking Using Porcine Corneas and the Role of Intraocular Pressure. Cornea. 33 (2), 125-130 (2014).
  40. Laggner, M., et al. Correlation Between Multimodal Microscopy, Tissue Morphology, and Enzymatic Resistance in Riboflavin-UVA Cross-Linked Human Corneas. Invest Ophthalmol Vis Sci. 56 (6), 3584-3592 (2015).
  41. Chai, D., et al. Quantitative assessment of UVA-riboflavin corneal cross-linking using nonlinear optical microscopy. Invest Ophthalmol Vis Sci. 52 (7), 4231-4238 (2011).
  42. Scarcelli, G., et al. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest Ophthalmol Vis Sci. 54 (2), 1418-1425 (2013).
  43. Shao, P., Besner, S., Zhang, J., Scarcelli, G., Yun, S. H. Etalon filters for Brillouin microscopy of highly scattering tissues. Opt Express. 24 (19), 22232-22238 (2016).
  44. Kumar, C. M., McNeela, B. J. Ultrasonic localization of anaesthetic fluid using sub-Tenon's cannulae of three different lengths. Eye (Lond). 17 (9), 1003-1007 (2003).
  45. Winder, S., Walker, S. B., Atta, H. R. Ultrasonic localization of anesthetic fluid in sub-Tenon's, peribulbar, and retrobulbar techniques. J Cataract Refract Surg. 25 (1), 56-59 (1999).
  46. Ripart, J., Eledjam, J. J. [Locoregional anesthesia for ophthalmic surgery: unique episcleral injection (sub-tenon) in the internal canthus]. Ann Fr Anesth Reanim. 17 (4), Fi72-Fi74 (1998).
  47. Meek, K. M., Hayes, S. Corneal cross-linking--a review. Ophthalmic Physiol Opt. 33 (2), 78-93 (2013).
  48. Wollensak, G., Spoerl, E. Collagen crosslinking of human and porcine sclera. J Cataract Refract Surg. 30 (3), 689-695 (2004).
  49. Paik, D. C., Wen, Q., Airiani, S., Braunstein, R. E., Trokel, S. L. Aliphatic beta-nitro alcohols for non-enzymatic collagen cross-linking of scleral tissue. Exp Eye Res. 87 (3), 279-285 (2008).

Access restricted. Please log in or start a trial to view this content.

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Second Harmonic GenerationSHGMicroscopyScleraTissue CrosslinkingTXLMyopiaCollagenSub tenon s InjectionFormaldehydeDifferential Scanning CalorimetryNon invasiveTissue PreparationRabbit EyeEyelid SpeculumConjunctivaExtra Ocular MusclesScleral InsertionPBSObjective LensNumerical ApertureImmersion Gel

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone