Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Here, we present a protocol to reliably and systematically identify coronary artery calcification (CAC) on non-gated computed tomography (CT) scans of the chest or abdomen. CAC provides an objective measure of coronary artery disease for both research and clinical purposes.
Coronary artery calcification (CAC) provides an objective measure of coronary artery disease and can readily be identified on non-gated computed tomography (CT) scans with a high correlation with gated cardiac CT scans. This standardized protocol takes a step-wise approach to not only optimizing an image for the identification of calcification but also to distinguishing CAC from other common causes of calcification in the cardiac silhouette. Recognition of CAC on non-gated CT scans helps to identify a very powerful prognostic factor that can influence therapeutic interventions or downstream diagnostic testing without requiring a gated cardiac scan. These non-gated CT scans are often acquired as part of the routine care of the patient, and this data is readily available without another dose of ionizing radiation. This protocol allows for the precise and accurate extraction of this data for the purposes of retrospective data analysis in clinical research studies, but also in the clinical evaluation and management of patients.
Coronary artery disease is a predictor of major adverse cardiovascular events. CAC on CT scans provides objective evidence of coronary artery disease and may identify previously undiagnosed patients. In addition, CAC has a significant prognostic value. Specifically, the absence of CAC on gated cardiac CT scans identifies a patient population that has a low risk for subsequent cardiovascular events in many different subsets of patients, including patients presenting with cardiac symptoms, as well as asymptomatic patients1,2. With ~70 million CT scans performed in the United States and the usage rising, and approximately 11 - 12 million of those scans being CT scans of the chest, the potential for identification of CAC in a large number of patients remains high3. However, the majority of the CT scans of the chest performed in that analysis are not dedicated cardiac CT scans. Dedicated cardiac CT scans have standardized slice thickness, acquisition protocols, electrocardiographic (ECG) gating to minimize cardiac motion, and reconstruction protocols. There is also a standardized quantitation for gated cardiac CT scans using the Agatston score. The Agatston scoring system has been well validated and associated with clinical outcomes1,2.
CAC can be readily identified on these non-gated CT scans but is often overlooked4. Good correlation has been demonstrated between CAC identified on non-gated CT scans and Agatston scores obtained from gated CT scans (> 90% in pooled analysis)5,6,7,8,9,10. In non-gated CT scans, the presence of CAC has been associated with worse clinical outcomes; whereas, the absence is linked to morbidity and mortality benefits10,11,12,13,14,15.
While different studies have looked at the prognosis of CAC on non-gated studies, there has been limited published data on how best to identify CAC. There have been attempts to identify an automated approach to the identification of CAC in low-dose CT chests scans done for lung cancer screening purposes; however, the translation of this to other study protocols is extremely limited16. The introduction of differential CT scanners, protocols, and contrast (both timing and amount) limits the application of this automated approach. Attempts by the Society of Cardiovascular Computed Tomography and the Society of Thoracic Radiology to promote the standard reporting of CAC on all CT chests have been met with mixed results17. While offering a general framework in this guideline document, the specifics of the identification of coronary calcification, especially for providers who do not routinely visualize coronary anatomy, are limited. Also, strategies specific to abdominal CT scans, contrasted studies, and adjudicating challenging cases are not addressed. Many studies publish their own inter- and intra-observer reproducibility for the protocol they used; however, there is not a standard approach used across different studies.
The ability to consistently and reliably identify CAC on these non-gated CT scans allows for the retrospective and prospective observational investigation of CAC in predicting cardiovascular outcomes in many different conditions. However, there needs to be a standard approach taken to identifying CAC on non-gated CT scans to ensure the reproducibility of the results, as well as a consistency in training to help in clinical practice.
This protocol follows guidelines set forth by the Institutional Review Board and human subject research protocol of the University of Kentucky.
1. Opening the Image Viewer
2. Identifying the Appropriate Patient
3. Identifying the Optimal Study
4. Identifying Optimal Image Series
5. Optimizing the Images to Highlight Calcification
6. Identifying Coronary Artery Calcification
7. Techniques for Identifying Subtle Areas of Calcification
8. Distinguishing Coronary Artery Calcification from Other Sources of Calcification
Coronary anatomy is relatively predictable in most patients as described above. The typical locations to evaluate these vessels are also easily identified in most patients (Figure 1). Using the described methodology, the presence or absence of CAC could be reliably identified in 84% of the patients in a single cohort (267 of 317 possible patients)15. The vast majority of patients excluded did not have a CT scan in the designated time f...
The identification of CAC is an extremely powerful prognostic tool with an ever-growing body of literature supporting its use in many different clinical scenarios. The majority of the literature is focused on gated cardiac CT scans for the identification of CAC, but there is robust evidence of both the correlation of CAC on non-gated CT scans, as well as the prognostic ability of this finding. Given the CT scan utilization in the United States, as well as the ever-growing concerns about radiation exposure, the ability to...
The authors have nothing to disclose.
This work was supported by the National Institutes of Health [1TL1TR001997-01, 2016-2017].
Name | Company | Catalog Number | Comments |
Microsoft Windows Server 2012 R2 Standard | PowerEdge R730 | 8F8KFB2 | Server specifications for post-processing software: Intel(R) Xeon(R) CPU E5-2609 v3 @ 1.90GHz Intel(R) Xeon®CPU E5-2609 v3 @ 1.90GHz |
Intuition | Terarecon | 4.4.12.xxx | Post-processing software |
McKesson Radiology Viewing Station | McKesson | Station Lite Version 1.0.0.182 | IP version 8.0.31.0 |
Computer Desktop and Monitor: Optiplex 9030 AIO | Dell | Optiplex 9030 AIO | Processor: Intel Core i5-4590S CPU @ 3.00 GHz, 3001Mhz, 4 Cores, 4 Logical Processors |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone