Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we present protocols of high-intensity interval and moderate-intensity continuous exercise to observe the response of circulating cardiac troponin T (cTnT) concentration to acute exercise over 10 days. The information may assist with clinical interpretations of post-exercise cTnT elevation and guide the prescription of exercise.
An elevation in cardiac troponin T (cTnT), as a highly specific biomarker of cardiomyocyte damage, after moderate-intensity continuous exercise (MCE) has been described. The exercise-induced cTnT response distorts the diagnostic role of the cTnT assay. Although high-intensity interval exercise (HIE) is growing in popularity and concerns remain about its safety, available data related to cTnT release after HIE is limited, which hampers the use of HIE as a health intervention. Here, we present three representative HIE protocols [traditional HIE (repeated 4 min cycling at 90% V̇O2max interspersed with 3 min rest, 200 kJ/session); sprint interval exercise (SIE, repeated 1 min cycling at 120% V̇O2max interspersed with 1.5 min rest, 200 kJ/session); and repeated sprint exercise (RSE, 40 x 6 s all-out sprints interspersed with 9 s rest)] and one representative MCE protocol (continuous cycling exercise at an intensity of 60% V̇O2max, 200 kJ/session). Forty-seven sedentary, overweight young women were randomly assigned to one of four groups (HIE, SIE, RSE, and MCE). Six bouts of respective exercise were performed by every single group, with each being 48 h apart. Meanwhile, for four groups, the duration of the entire testing period was identical, being 10 days. Before and after the first and final exercise bouts, an assessment was conducted of cTnT. The current study provides a frame of reference giving a clear picture of how a specific exercise session affects the circulating cTnT concentration at the early stage of training. The information may assist with clinical interpretations of post-exercise cTnT elevation and guide the prescription of exercise, especially for HIE.
The benefits of regular exercise on the heart are well-documented1. However, the risk of cardiac events, such as acute myocardial infarction (AMI), transiently increases during an intense exercise2,3. Individuals with low levels of regular physical activity show higher risk towards AMI2,3. Cardiac troponin T (cTnT) is the biochemical gold standard in the diagnosis of AMI4. However, there is a burgeoning evidence that the cTnT is elevated after continuous prolonged exercise, which undoubtedly distorts the diagnostic role of the cTnT assay5.
The repetitive bouts of relatively intense exercise interspersed with short breaks are a typical element of high-intensity interval exercise (HIE), which is growing in popularity in various fields such as cardiac rehabilitation, health and fitness6,7. The widespread interest in HIE is due in part to the ability of HIE training to elicit beneficial physiological adaptations similar or superior to the traditional moderate-intensity continuous exercise (MCE) training, despite a reduced total exercise volume and time commitment6. However, concerns related to the safety of HIE have been expressed due to the high cardiac demand8. To date, available data related to cTnT release upon HIE is limited. Moreover, no previous integrated study has investigated the effect of various modalities of HIE and traditional MCE on the appearance of cTnT with exercise. Thus, it is unclear whether, with equalization of total mechanical work between HIE and MCE, different exercise formats will lead to the distinction in cTnT concentrations and what the range of the elevated cTnT values is. Given that exercise conducted at higher intensities might lead to a higher risk of cardiac events2,3, it is pertinent to develop a representative HIE and MCE proposals with the known range of cTnT responses. The evaluation of exercise-associated cTnT elevation could potentially be helpful in clinical decision-making and assist clinical physiologists in developing more effective and safe exercise prescriptions.
Consequently, we outline protocols of the three representative types of HIE and one representative type of MCE to gather physiological data while observing cTnT responses. Considering that the risk of acute cardiac events is higher in people who do not engage in regular exercise2,3 and the overall release of cTnT induced by exercise reduces with regular training9, this study recruited sedentary, overweight females who completed a 10 day training program. This provided the prospect to work in the early stage of training and target an under-researched group.
The protocol (No. 31771319) was approved by the Hebei Normal University Review Board and conformed to the Declaration of Helsinki. All participants provided written informed consent before participating in the testing described.
1. Participant Screening and Preparation for the Experiment
2. Experimental Procedures
Figure 1: Schematic diagram of study procedures. HIE = high-intensity interval exercise; SIE = sprint interval exercise; RSE = repeated sprint exercise; MCE = moderate-intensity continuous exercise. Please click here to view a larger version of this figure.
3. Exercise Protocols
4. Statistical Analyses
All participants (n = 47) completed the study, and no adverse cardiac events (e.g., chest pain and sign of myocardial ischemia on ECG) were found during testing in the four groups. As expected, the acute exercise heart rate (HR) data, including HRmean and %HRmax, at the 1ST assessment is similar (all P > 0.05) to those in the 6TH assessment in all four groups. Further, the HR data in the RSE and MCE groups is the highest and lowest among the four groups, respectively, but is similar bet...
The repetitive short to long bouts of rather high-intensity exercise interspersed with recovery periods are involved in HIE, which is subdivided into traditional HIE (“near maximal” efforts) and SIE (“supramaximal” efforts), using a common classification scheme6. In addition, RSE is a particularly intense form of SIE, where the activity is “all-out” but only lasts for 3 to 7 s6. To the best of our knowledge, this is the first integrated s...
The authors declare that they have no competing financial interests.
This work was supported by the National Natural Science Foundation of China (Grant No. 31771319).
Name | Company | Catalog Number | Comments |
Cobas E 601 analyser | Roche Diagnostics, Penzberg, Germany | Used for measuring the circulating cardiac troponin T concentration | |
Monark 839E Stress Testing Cycle Ergometer | Monark Exercise AB, Vansbro, Sweden | Used for all exercise protocols except repeated sprint exercise | |
Monark 894E Wingate Testing Cycle Ergometer | Monark Exercise AB, Vansbro, Sweden | Only used for repeated sprint exercise protocol | |
Quark-PFT-ergo Metabolic Analyser | Cosmed, Rome, Italy | C09072-02-99 | |
SPSS Statistics 20.0 software package | IBM Corp., Armonk, USA | ||
Zephyr BioHarness 3.0 | Zephyr Technology, Auckland, New Zealand | 9800.0189/9600.0190 | Electrocardiograph Monitor |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone