Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Allelopathy has shown promise as a useful supplemental weed control strategy in cropping systems. To determine the allelopathic potential of a desired plant specimen, a stair-step screening method is provided.
Weed competition contributes significantly to yield losses in cropping systems worldwide. The evolution of resistance in many weed species to continuously applied herbicides has presented the need for additional management methods. Allelopathy is a physiological process that some plant species possess that provide the plant with an advantage over its neighbors. Allelopathic crop varieties would be equipped with the ability to suppress the growth of surrounding competitors, thus reducing potential yield loss due to weed interference. This paper focuses on the construction and operation of a stair-step assay used for the screening of the allelopathic potential of a donor species (Oryza sativa) against a receiver weed species (Echinochloa crus-galli) in a greenhouse setting. The structure described in this paper serves as a stand for the plant samples and incorporates a timed watering system for the accumulation and distribution of allelochemicals. Allelochemicals produced by the plant roots are allowed to flow downward through a series of four pots separately into a collection tank and recycled back to the top plant through electric pumps. This method of screening provides an avenue for the allelochemicals from the donor plant to reach receiver plants without any resource competition, thus allowing quantitative measurement of the allelopathic potential of the selected donor plant. The allelopathic potential is measurable through the height reduction of the receiver plants. Preliminary screening data for the effectiveness of this method demonstrated height reduction in the receiver species, barnyardgrass (E. crus-galli), and thus the presence of allelopathic residues from the donor plant, weedy rice (Oryza sativa).
Allelopathy is a natural and complex phenomenon that has been the focus of many plant scientists in the past few decades. The mechanisms relating to allelopathy for use in crops have been the subject of much research since the 1930s, when Molisch observed that a plant has a direct or indirect effect on a neighboring plant through the production and secretion of chemical compounds into the environment1. Allelopathy is the production of secondary metabolites that have inhibitory effects on the growth and germination of some plant species. Released allopathic chemical compounds help provide the donor plants with a competitive advantage by adding phytotoxins to the environment around them2. Many factors contribute to the allelopathic activity. It is selective in its effectiveness and varies between varieties, environmental conditions, growth stage, stress, environment, and nutrient availability3.
In recent years, allelopathy has been highlighted in research as a possible supplement to the constant and growing weed control crisis. With the growing global population, the demand for sustainable food and fiber production has increased4. Weed control is one of the biggest threats to production faced by agronomists5,6. Traditional weed control methods focus on mechanical, chemical, and cultural practices. The continuous usage of herbicides, while effective, useful, and efficient, has promoted the evolution of resistant weed populations at an alarmingly fast pace7. Genetic engineering and breeding practices have been used effectively to give crops competitive advantages over weeds by designing them to withstand chemical applications that their neighbors cannot survive7,8. Although effective, these technologies are not always sustainable and sometimes pose outcrossing concerns9. Supplemental weed management practices need to be introduced if the goal of increasing food production is to be met10. Allelopathy shows excellent promise as a new defense tool for crops to improve their quality and outlive their competitors1,7.
Allelochemicals are often secondary products, and because their production is highly influenced by environmental factors, the specific compounds associated with plant suppression can be difficult to identify3. Production factors include genetics and the joint action of secondary metabolites that may act synergistically11,12. It is challenging to separate allelopathic activity from the competition that naturally exists within crop-weed interactions, and due to this, when screening for allelopathy there must be a standard set of outcomes that qualify the assay as valid and repeatable. Below is a set of criteria that qualifies findings of allelopathy as outlined by Olofsdotter et al.12 1) One plant must demonstrate suppression of another plant in a pattern; 2) The chemicals that are released into the environment in bioactive amounts must be produced by the donor plant; 3) The chemicals produced must be transportable to the receiver plant; 4) Some mechanism of uptake must be present in the receiver plant; 6) The pattern of inhibition observed must have no other exclusive explanation (e.g, competition for resources)12.
In an effort to overcome the barrier between the lack of knowledge of the mechanisms supporting allelopathy and variety development, phenotypic traits associated with allelopathic varieties can be identified and selected for further research and use. Some plants known to have allelopathic qualities are rye, sorghum, rice, sunflower, rapeseed, and wheat13. During the early observations of allelopathy in crops, due to distinguished borders of weed growth in field experiments, it was proposed that chemicals were involved rather than competition for resources14. However, most studies were field experiments that made it impossible to eliminate competition as a factor14. Competition elimination efforts gave way to lab and greenhouse experiments in attempts to prove and quantify allelopathic activity in rice and other crops. Field and greenhouse methods to screen plants for allelopathy demonstrate that allelopathic tendencies are present in both growing conditions11,15. Some critics believe that laboratory screenings may only hold limited value due to the lack of natural conditions, which may affect the results15.
The proposed method for screening allelopathic potential in plants provides adequate resources and space and eliminates resource competition with the use of a stair-step structure11,17. The method was adapted and modified from previous experiments exploring allelopathy in turfgrass and barley17,18. These studies found that a similar system was able to produce accurate results on the allelopathic potential of a target plant while removing any doubts that the observations could be attributed to natural competition. The stair-step method creates a circulatory system where a nutrient solution from a reservoir can cycle through each plant to an incubation tray through a few steps. An electric pump then recycles the solution along with any allelochemicals produced18. A method such as this is efficient in both time, space, and resources. It also provides similar field conditions for the plants and eliminates any resource competition. The methods and tools used for screening are easily manipulated to fit the desired study goals, conditions, and specific species. The objective of this study is to confirm weedy rice allelopathy through height suppression measurements on barnyardgrass with the use of the stair-step method.
1. Stand Construction
NOTE: Measurements for the wood are listed as thickness (cm) x width (cm) x length (m).
Figure 1: Front view of the wooden base stand. A wooden base serves as the stand for the plant samples. Materials for the system are to be assembled and added depending on the number of samples needed for the experiment. In this study, two stands served as a base for 31 samples. Please click here to view a larger version of this figure.
2. System Assembly
3. Planting
4. Sample Placement
Figure 2: Placement map. Diagram depicting placements of donor (WR/R) and receiver plants (BYG) in respective positions in the stair-step system. Two columns of the stair-step system with plants in place comprise one treatment. A single column of receiver plants served as a control for one replication (far right), a single column of donor plants as a control for each accession (center), and the treatment column consisted of alternating donor and receiver plants (far left). Please click here to view a larger version of this figure.
Figure 3: Final stair-step structure. The stair-step system assembled with the plants in place. The system contained four rows of plant samples and a collection tank at the bottom for the solution to cycle to the top bottle and downward by gravity through each respective pot. Please click here to view a larger version of this figure.
5. Operation
6. Data Collection
7. Data Analysis
Two preliminary screenings using this method were performed on nine weedy rice accessions (B2, S33, B83, S97, S94, B81, B8, B34, B14) and five cultivated rice lines (PI338046, Rex, Rondo, PI312777, CL163). Weedy rice accessions and rice lines were selected based on their performance in previous allelopathic screenings conducted by Shrestha (2018)18. The weedy rice seeds were collected from across the state of Arkansas. The rice lines selected are commonly grown lines in the US, some known to expre...
Exploiting allelopathy may potentially serve as a biological control for weeds that are difficult to manage1,7,13. Allelopathy has shown great potential as a possible solution to the weed crisis in rice and serves as an alternative or supplement to chemicals and manual weed control practices5,13,19. Identifying allelopathic varieties or...
The authors have nothing to disclose.
Funding for this project was provided by the Special Research Initiative Grant sponsored by the Mississippi Agricultural and Forestry Experiment Station and is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch project under accession number 230060.
Name | Company | Catalog Number | Comments |
1.25 in by 6 in by 8 ft standard severe weather wood board | Lowe's, Mooresville, NC | 489248 | N/A |
2 in by 4 in by 8 ft white wood stud | Lowe's, Mooresville, NC | 6005 | Cut into appropriate sizes |
63 mm (2.5 in) corner braces | Lowe's, Mooresville, NC | 809449 | N/A |
Asporto 16 oz Round Black Plastic To Go Box - with Clear Lid, Microwavable – 6.25 in by 6.25 in by 1.75 in - 100 count box | Restaurantware.com, Chicago, IL | RWP0191B | black |
ATP vinyl-flex PVC food grade plastic tubing, clear, 0.125 in id by 0.25 in od, 100 ft | Amazon, Seattle WA | B00E6BCV0G | N/A |
Ccm-300 chlorophyll content meter | Opti-Sciences, Inc. Hudson, NH | ccm/300 | N/A |
Common 1 in by 2 in by 8 ft pine board | Lowe's, Mooresville, NC | 1408 | N/A |
Contractors choice contractor 24-pack 42-gallon black outdoor plastic construction trash bag | Lowe's, Mooresville, NC | 224272 | Cut to cover collection tanks |
EURO POTS | Greenhouse Megastore, Danville, IL | CN-EU | 15 cm short black 6 in diameter 4.25 in height 1.37 qt volume |
Fisher brand petri dish with clear lid | Fisher Scientific, Waltham, MA | FB0857513 | N/A |
Aexit Ac 220 V-240 V electrical equipment US plug 21 W 1,000 L/hr multipurpose submersible pump | Amazon, Seattle WA | B07MBMYQNT | Nozzle size should fit tubes and can be repaced |
Woods 50015 WD outdoor 7 day heavy-duty digital outlet timer | Walmart, Bentonville, AR | 565179767 | 20 settings |
GE silicone 2+ 10.1 oz almond silicone caulk | Lowe's, Mooresville, NC | 48394 | Sealant for edges of any attached tubing |
Great Value Distilled Water | Walmart, Bentonville, AR | 565209428 | N/A |
Great Value White Basket coffee filters 200 count | Walmart, Bentonville, AR | 562723371 | Size may vary |
Grip-rite primgaurd plus #9-3 in pollimerdex screws | Lowe's, Mooresville, NC | 323974 | N/A |
Hoagland’s No. 2 basal salt mixture | Caisson Laboratories, INC. Smithfield, UT | HOP01/50LT | ½ strength rate |
JMP (14) | SAS Institute Inc. North Carolina State University, NC | N/A | |
Project source flat black spray paint | Lowe's, Mooresville, NC | 282254 | N/A |
Project source utility 1.88 in by 165 ft gray duct tape | Lowe's, Mooresville, NC | 488070 | N/A |
Rubbermaid 2 qt square food storage canister clear | Walmart, Bentonville, AR | 555115144 | Collection tank discard lid |
Sealproof unreinforced PVC clear vinyl tubing, food-grade .5 in id by .625 in od, 100 ft | Amazon, Seattle WA | B07D9CLGV3 | Connects to pump |
Short Mountain Silica 50 lb Play sand | Lowe's, Mooresville, NC | 10392 | Sand should be purified |
Steve Spangler's 1 L Soda Bottles - 6 Pack - For Science Experiment Use | Amazon, Seattle WA | UPC 192407667341 | Top step tank discard lid |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone