Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

The present protocol describes particle image velocimetry (PIV) measurements performed to investigate the sinus flow through the in vitro setup of the transcatheter aortic valve (TAV). The hemodynamic parameters based on velocity are also determined.

Streszczenie

Aortic valve dysfunction and stroke have recently been reported in transcatheter aortic valve implantation (TAVI) patients. Thrombus in the aortic sinus and neo-sinus due to hemodynamic changes has been suspected. In vitro experiments help investigate the hemodynamic characteristics in the cases where an in vivo assessment proves to be limited. In vitro experiments are also more robust, and the variable parameters are controlled readily. Particle image velocimetry (PIV) is a popular velocimetry method for in vitro studies. It provides a high-resolution velocity field such that even small-scale flow features are observed. The purpose of this study is to show how PIV is used to investigate the flow field in the aortic sinus after TAVI. The in vitro setup of the aortic phantom, TAVI for PIV, and the data acquisition process and post-processing flow analysis are described. The hemodynamic parameters are derived, including the velocity, flow stasis, vortex, vorticity, and particle residence. The results confirm that in vitro experiments and PIV help investigate the hemodynamic features in the aortic sinus.

Wprowadzenie

Aortic stenosis is a common disease in older adults, and it is when the aortic valve doesn't open, reducing blood flow. The problem is caused by the thickening or calcification of the aortic valve1. Therefore, it is a necessary treatment to enhance the blood flow and decrease the load on the heart. It is treated by remodeling the aortic valve or replacing it with an artificial valve. This study focuses on transcatheter aortic valve implantation (TAVI), replacing the malfunctioning aortic valve with an artificial one using a catheter.

TAVI has been recommended for patients challenged in surgery, and the mortality ....

Protokół

1. In vitro setup

  1. Prepare the experimental setup on an optic table, including a piston pump, data acquisition device (DAQ), and a computer with the required system engineering software and a motor controlling software (see Table of Materials) (Figure 1).
    NOTE: The piston pump has been previously tested and calibrated and consists of a motor, motor driver, and linear actuator9.
  2. Import the spreadsheet file with the flow rate information to the system engineering software.
    NOTE: For example, heart rate is 60 bpm, the maximum flow rate is 20....

Wyniki

The velocity fields showed a different sinus flow structure depending on the valve diameter in Figure 4. For TAV (23 mm), the velocity was higher than 0.05 m/s between TAV and STJ from early systole to peak systole that TAV was opened using the forwarding jet. High velocity was then distributed in a narrow range near the stent at late systole. The velocity at diastole was lower than 0.025 m/s, and two vortexes with low velocity appeared. For TAV (26 mm), when the valve opened, high velocity .......

Dyskusje

The sinus flow changed due to different sinus geometry after TAVI. The vortex was formed by the aortic valve opening and the interaction with the forward jet of systole22. In the study of the artificial surgical valve without native leaflets, vortex observed in the sinus region at systole was normal23. This study forms the vortex presented at diastole by reducing the forward jet and coming into the sinus. The sinus flow encountered the native leaflet; as a result, it splits.......

Ujawnienia

The authors have nothing to disclose.

Podziękowania

This research was supported by the Basic Science Research Program of the National Research Foundation of Korea, which is funded by the Ministry of Education (NRF-2021R1I1A3040346 and NRF-2020R1A4A1019475). This study was also supported by 2018 Research Grant (PoINT) from Kangwon National University.

....

Materiały

NameCompanyCatalog NumberComments
3D PrinterPrusa ResearchOriginal Prusa i3 MK2; FDM printer
Aluminum bar (square)APSPROKHP-3030, KHP-6060Dimension: 30 mm x 30 mm, 60 mm x 60 mm
Bulb pumpSkyhopeMHL-1
Camera controlling softwarePhantomPCC 3.4 softwareThe software controll the high speed camera
Check valveHANJU STEEL PIPECheck valve; 1/2 inch (15A)
Digital Aqusition deviceNational InstrumentsUSB-6001
GlycerinANU KoreaIt used for making a working fluid
High-speed cameraPhantomPhantom VEO 710E-L
LaserChangchun New Industries Optoelectronics TechnologyMGL-W-532; CW Nd:YAG Laser
Linear actuatorTHOMSONPC-40; it converts the rotational motion to lenear motion
Macro lensNikonVR Micro-NIKKOR 105mm, f/1.4
MotorKOLLMORGENAKM33H-ANCNR-00; DC servo motor
Motor controlling softwareKOLLMORGENKollmorgen software; the software controll the motor driver
Motor driverKOLLMORGENAKD-B00606-NBAN-0000
Open-source electronic prototypic platformArduinoA000066Arduino Uno R3. It used for making a external trigger
Optic tableSMTECH1800 (W) x 900 (B) x 800 (H)
ParticleDantec Dynamics80A6011Hollow Glass Sphere. Mean diameter:10 µm, Density: 1090 kg/m3
PIVlabPIVlabOpen source algorithm based on MATLAB
https://kr.mathworks.com/matlabcentral/fileexchange/27659-pivlab-particle-image-velocimetry-piv-tool-with-gui
Pressure gaugeOMEGAPX309-015A5V. Measurement range: 0~15psi
RefractometerATAGO2350R-5000. Hand held refractometer; measurement range: 1.333-1.520
Resistance valveHANJU STEEL PIPEBall valve; 1/2 inch (15A)
SalineDAI HAN PHARMIt is used for making a working fluid and for preserving the TAV
Silicone hoseHSWInner diameter 26mm, Outter diameter 30mm; Inlet length 5m, Outlet length 1.5m
System enginnering softwareNational InstrumentsLabVIEW software. The software controlls the DAQ.
Transcatheter Aortic Valve, TAV (23 mm) and TAV (26 mm)Edwards LifesciencesSAPIEN3 23mm, SAPIEN3 26mm. It is supported by Seoul Asan Medical
ViscosmeterBrookfiledDVELV; Measurement range: 1-2x109 cp

Odniesienia

  1. Carabello, B. A., Paulus, W. J. Aortic stenosis. The Lancet. 373 (9667), 956-966 (2009).
  2. Jakobsen, L., et al. Short-and long-term mortality and stroke risk after transcatheter aortic valve implantation. The Ame....

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Particle Image VelocimetryHemodynamicsAortic PhantomVelocity FieldsProsthetic Heart ValveTranscatheter Aortic Valve ImplantationParticle ImagesExperimental SetupData AcquisitionHigh speed CameraLaser SheetContrast limited Adaptive Histogram EqualizationCross CorrelationFast Fourier Transform

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone