Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
The present protocol describes particle image velocimetry (PIV) measurements performed to investigate the sinus flow through the in vitro setup of the transcatheter aortic valve (TAV). The hemodynamic parameters based on velocity are also determined.
Aortic valve dysfunction and stroke have recently been reported in transcatheter aortic valve implantation (TAVI) patients. Thrombus in the aortic sinus and neo-sinus due to hemodynamic changes has been suspected. In vitro experiments help investigate the hemodynamic characteristics in the cases where an in vivo assessment proves to be limited. In vitro experiments are also more robust, and the variable parameters are controlled readily. Particle image velocimetry (PIV) is a popular velocimetry method for in vitro studies. It provides a high-resolution velocity field such that even small-scale flow features are observed. The purpose of this study is to show how PIV is used to investigate the flow field in the aortic sinus after TAVI. The in vitro setup of the aortic phantom, TAVI for PIV, and the data acquisition process and post-processing flow analysis are described. The hemodynamic parameters are derived, including the velocity, flow stasis, vortex, vorticity, and particle residence. The results confirm that in vitro experiments and PIV help investigate the hemodynamic features in the aortic sinus.
Aortic stenosis is a common disease in older adults, and it is when the aortic valve doesn't open, reducing blood flow. The problem is caused by the thickening or calcification of the aortic valve1. Therefore, it is a necessary treatment to enhance the blood flow and decrease the load on the heart. It is treated by remodeling the aortic valve or replacing it with an artificial valve. This study focuses on transcatheter aortic valve implantation (TAVI), replacing the malfunctioning aortic valve with an artificial one using a catheter.
TAVI has been recommended for patients challenged in surgery, and the mortality ....
1. In vitro setup
The velocity fields showed a different sinus flow structure depending on the valve diameter in Figure 4. For TAV (23 mm), the velocity was higher than 0.05 m/s between TAV and STJ from early systole to peak systole that TAV was opened using the forwarding jet. High velocity was then distributed in a narrow range near the stent at late systole. The velocity at diastole was lower than 0.025 m/s, and two vortexes with low velocity appeared. For TAV (26 mm), when the valve opened, high velocity .......
The sinus flow changed due to different sinus geometry after TAVI. The vortex was formed by the aortic valve opening and the interaction with the forward jet of systole22. In the study of the artificial surgical valve without native leaflets, vortex observed in the sinus region at systole was normal23. This study forms the vortex presented at diastole by reducing the forward jet and coming into the sinus. The sinus flow encountered the native leaflet; as a result, it splits.......
The authors have nothing to disclose.
This research was supported by the Basic Science Research Program of the National Research Foundation of Korea, which is funded by the Ministry of Education (NRF-2021R1I1A3040346 and NRF-2020R1A4A1019475). This study was also supported by 2018 Research Grant (PoINT) from Kangwon National University.
....Name | Company | Catalog Number | Comments |
3D Printer | Prusa Research | Original Prusa i3 MK2; FDM printer | |
Aluminum bar (square) | APSPRO | KHP-3030, KHP-6060 | Dimension: 30 mm x 30 mm, 60 mm x 60 mm |
Bulb pump | Skyhope | MHL-1 | |
Camera controlling software | Phantom | PCC 3.4 software | The software controll the high speed camera |
Check valve | HANJU STEEL PIPE | Check valve; 1/2 inch (15A) | |
Digital Aqusition device | National Instruments | USB-6001 | |
Glycerin | ANU Korea | It used for making a working fluid | |
High-speed camera | Phantom | Phantom VEO 710E-L | |
Laser | Changchun New Industries Optoelectronics Technology | MGL-W-532; CW Nd:YAG Laser | |
Linear actuator | THOMSON | PC-40; it converts the rotational motion to lenear motion | |
Macro lens | Nikon | VR Micro-NIKKOR 105mm, f/1.4 | |
Motor | KOLLMORGEN | AKM33H-ANCNR-00; DC servo motor | |
Motor controlling software | KOLLMORGEN | Kollmorgen software; the software controll the motor driver | |
Motor driver | KOLLMORGEN | AKD-B00606-NBAN-0000 | |
Open-source electronic prototypic platform | Arduino | A000066 | Arduino Uno R3. It used for making a external trigger |
Optic table | SMTECH | 1800 (W) x 900 (B) x 800 (H) | |
Particle | Dantec Dynamics | 80A6011 | Hollow Glass Sphere. Mean diameter:10 µm, Density: 1090 kg/m3 |
PIVlab | PIVlab | Open source algorithm based on MATLAB https://kr.mathworks.com/matlabcentral/fileexchange/27659-pivlab-particle-image-velocimetry-piv-tool-with-gui | |
Pressure gauge | OMEGA | PX309-015A5V. Measurement range: 0~15psi | |
Refractometer | ATAGO | 2350 | R-5000. Hand held refractometer; measurement range: 1.333-1.520 |
Resistance valve | HANJU STEEL PIPE | Ball valve; 1/2 inch (15A) | |
Saline | DAI HAN PHARM | It is used for making a working fluid and for preserving the TAV | |
Silicone hose | HSW | Inner diameter 26mm, Outter diameter 30mm; Inlet length 5m, Outlet length 1.5m | |
System enginnering software | National Instruments | LabVIEW software. The software controlls the DAQ. | |
Transcatheter Aortic Valve, TAV (23 mm) and TAV (26 mm) | Edwards Lifesciences | SAPIEN3 23mm, SAPIEN3 26mm. It is supported by Seoul Asan Medical | |
Viscosmeter | Brookfiled | DVELV; Measurement range: 1-2x109 cp |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaPrzeglądaj więcej artyków
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone