Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
This paper presents an integrative approach to investigating the functional network for spatial navigation in the human brain. This approach incorporates a large-scale neuroimaging meta-analytic database, resting-state functional magnetic resonance imaging, and network modeling and graph-theoretical techniques.
Spatial navigation is a complex function involving the integration and manipulation of multisensory information. Using different navigation tasks, many promising results have been achieved on the specific functions of various brain regions (e.g., hippocampus, entorhinal cortex, and parahippocampal place area). Recently, it has been suggested that a non-aggregate network process involving multiple interacting brain regions may better characterize the neural basis of this complex function. This paper presents an integrative approach for constructing and analyzing the functionally-specific network for spatial navigation in the human brain. Briefly, this integrative approach consists of three major steps: 1) to identify brain regions important for spatial navigation (nodes definition); 2) to estimate functional connectivity between each pair of these regions and construct the connectivity matrix (network construction); 3) to investigate the topological properties (e.g., modularity and small worldness) of the resulting network (network analysis). The presented approach, from a network perspective, could help us better understand how our brain supports flexible navigation in complex and dynamic environments, and the revealed topological properties of the network can also provide important biomarkers for guiding early identification and diagnosis of Alzheimer's disease in clinical practice.
Functional specificity is a fundamental organization principle of the human brain, which plays a crucial role in shaping cognitive functions1. Abnormalities in the organization of functional specificity can reflect hallmark cognitive impairments and the associated pathological foundations of major brain disorders such as autism and Alzheimer's disease2,3. While conventional theories and research have tended to focus on single brain regions, such as the fusiform face area (FFA) for face recognition4 and parahippocampus place area (PPA)5 for scene processing, an increasing body of evidence suggests that complex cognitive functions, including spatial navigation and language, require coordinate activity across multiple brain regions6. Investigating the mechanisms underlying the interactions in support of complex cognitive functions is a critical scientific question that will help to shed light on the functional architecture and operation of the brain. Here, taking spatial navigation as an example, we present an integrative method for modeling the functional network for spatial navigation in the human brain.
Spatial navigation is a complex cognitive function, which involves the integration and manipulation of multiple cognitive components, such as visual-spatial coding, memory, and decision making7. With functional magnetic resonance imaging (fMRI), numerous studies have made significant advances in understanding the underlying cognitive processing and neural mechanisms. For instance, specific functions have been linked to different brain regions using various navigation tasks: scene processing is specifically associated with PPA, and transformation of navigation strategies is associated with the retrosplenial cortex (RSC)8,9. These studies provided important insights into the neural basis of spatial navigation. However, navigation is an internally dynamic and multimodal function, and the functions of single regions are not sufficient to explain large individual differences in spatial navigation10 that are commonly observed.
With the emergence of fMRI-based connectomics, researchers began to explore how some key brain regions interact with each other to support spatial navigation. For example, functional connectivity between the entorhinal and posterior cingulate cortices has been found to underpin navigation discrepancies in at-risk Alzheimer's disease11. In another study, we for the first time proposed a network approach by integrating connectome methods and almost all functionally relevant regions (nodes) for spatial navigation, and the results showed that topological properties of this network showed specific associations with navigation behaviors12. This study provides new insights into theories of how multiple brain regions interact with each other to support flexible navigation behaviors10,13.
The present work demonstrates an updated version of the integrative approach for modeling the functional network. Briefly, two updates were included: 1) While the nodes defined in the original study were identified based on an earlier and smaller database (55 studies with 2,765 activations, accessed in 2014), the present definition was based on the latest database (77 studies with 3,908 activations, accessed in 2022); 2) to increase functional homogeneity of each node, besides the original anatomical AAL (Anatomical Automatic Labeling) atlas14, we applied a new brain parcellation, which has a much finer resolution and higher functional homogeneity (see below). We expected that both updates would improve the modeling of the functional network. This updated protocol provides a detailed procedure for investigating the neural basis of spatial navigation from a network perspective and helps understand individual variations in navigation behaviors in health and disease. A similar procedure could also be used for network modeling for other cognitive constructs (e.g., language and memory).
NOTE: All the software used here is shown in the Table of Materials. The data used in this study for demonstration purposes were from the Human Connectome Project (HCP: http://www. humanconnectome.org)15. All experimental procedures were approved by the Institutional Review Board (IRB) at Washington University. Imaging data in the HCP dataset were acquired using a modified 3T Siemens Skyra scanner with a 32-channel head coil. Other image acquisition parameters are detailed in an earlier paper16. Minimal preprocessed data were downloaded for the demonstration, which had finished following preprocessing steps: gradient distortion correction, motion correction, field map preprocessing, spatial distortion correction, spatial normalization to the Montreal Neurological Institute (MNI) space, intensity normalization, and bias field removal. Resting-state fMRI data from researchers' projects can also be used.
1. Data preprocessing
Figure 1: Rs-fMRI preprocess and functional network connectivity estimation. The settings of preprocess (removing first 10 images, spatially smoothing with FWHM of 4 mm, linear temporally detrending, regressing out white matter signals, cerebrospinal fluid (CSF) signals, and head motion with 24 parameters, filtering the band of 0.01-0.1 HZ) and the static correlation with fisher' Z transformed. Abbreviations: Rs-fMRI = resting-state functional magnetic resonance imaging; FWHM = full width at half-maximum; CSF = cerebrospinal fluid. Please click here to view a larger version of this figure.
2. Network construction and analyses
NOTE: The general workflow for the construction and analyses of the navigation network are summarized into three main steps (Figure 2).
Figure 2: General workflow for the construction and analyses of the navigation network. (A) Choose navigation as the term to be searched in Neurosynth database. (B) A list of activation coordinates can be generated. (C) Run a meta-analysis using functions from the Neurosynth to get several brain maps. (D,E) By incorporating the meta-analytic map and a whole-brain parcellation atlas (AICHA), nodes (ROI) can be generated. (F) The construction of a navigation network using the resulting navigation nodes and their functional connectivity (Connectivity Estimation and Network Analysis). Abbreviations: ROI = region of interest; AICHA = atlas of intrinsic connectivity of homotopic areas. Please click here to view a larger version of this figure.
Figure 3: Network metrics analysis. This analysis defines the weighted positive networks with 10 thresholds. Calculate two global network metrics of small word and efficiency, four nodal network metrics of clustering coefficient, shortest path length, efficiency, and degree centrality. Please click here to view a larger version of this figure.
Figure 4: The calculation of average navigation networks. The averaged (functional) operation helps to calculate the average networks of all participants. Please click here to view a larger version of this figure.
The navigation networks
The present study identified 27 brain regions, which are associated with spatial navigation, by incorporating the latest meta-analysis neuroimaging database and the AICHA atlas. These regions consisted of the medial temporal and the parietal regions that have been commonly reported in navigation neuroimaging studies. The spatial distribution of these regions is shown in Figure 5A and Figure 5C. As a...
Network neuroscience is expected to help in understanding how the brain network supports human cognitive functions32. This protocol demonstrates an integrative approach to studying the functional network for spatial navigation in the human brain, which can also inspire network modeling for other cognitive constructs (e.g., language).
This approach consisted of three main steps: node definition, network construction, and network analysis. While network construction and n...
The authors declare that there is no conflict of interest.
Xiang-Zhen Kong was supported by the National Natural Science Foundation of China (32171031), STI 2030 - Major Project (2021ZD0200409), Fundamental Research Funds for the Central Universities (2021XZZX006), and Information Technology Center of Zhejiang University.
Name | Company | Catalog Number | Comments |
Brain connectivity toolbox (BCT) | Mikail Rubinov & Olaf Sporns | 2019 | The Brain Connectivity Toolbox (brain-connectivity-toolbox.net) is a MATLAB toolbox for complex-network (graph) analysis of structural and functional brain-connectivity data sets. |
GRETNA | Jinhui Wang et al. | 2 | GRETNA is a graph theoretical network analysis toolbox which allows researchers to perform comprehensive analysis on the topology of brain connectome by integrating the most of network measures studied in current neuroscience field. |
MATLAB | MathWorks | 2021a | MATLAB is a programming and numeric computing platform used by millions of engineers and scientists to analyze data, develop algorithms, and create models. |
Python | Guido van Rossum et al. | 3.8.6 | Python is a programming language that lets you work more quickly and integrate your systems more effectively. |
Statistical Parametric Mapping (SPM) | Karl Friston et.al | 12 | Statistical Parametric Mapping refers to the construction and assessment of spatially extended statistical processes used to test hypotheses about functional imaging data. |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone