Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This is intended as an introduction to patch clamp recording from Xenopus laevis oocytes. It covers vitelline membrane removal, formation of a gigaohm seal (gigaseal), and the optional conversion of the patch to the outside-out topology.
Since its development by Sakmann and Neher 1, 2, the patch clamp has become established as an extremely useful technique for electrophysiological measurement of single or multiple ion channels in cells. This technique can be applied to ion channels in both their native environment and expressed in heterologous cells, such as oocytes harvested from the African clawed frog, Xenopus laevis. Here, we describe the well-established technique of patch clamp recording from Xenopus oocytes. This technique is used to measure the properties of expressed ion channels either in populations (macropatch) or individually (single-channel recording). We focus on techniques to maximize the quality of oocyte preparation and seal generation. With all factors optimized, this technique gives a probability of successful seal generation over 90 percent. The process may be optimized differently by every researcher based on the factors he or she finds most important, and we present the approach that have lead to the greatest success in our hands.
Part 1: Removing the vitelline membrane
Part 2: Gigaseal generation
Part 5: Outside-out topology (optional)
Part 6: Anticipated Results
Generally, higher resistance seals are preferable and longer lived. 10 GΩ is a good guideline for high-quality seals. In our experience, the chances of getting seals of this quality vary with many factors, particularly cell and pipette quality. Patch acquisition rates can be over 95% with healthy cells, clean pipettes, and an experienced researcher. These patches may last for many minutes and are suitable for any electrophysiological study of ion channels expressed in Xenopus oocytes, including single-channel recordings.
There are many parameters of electrophysiological recording not discussed here. Rig setup, system noise management, channel expression, and recording protocols are all also critical to good experimental results.
In our experience, these are the most critical parameters for forming reliable seals: high quality oocytes, removing the vitelline membrane quickly (a.k.a., "peeling"), use newly pulled pipettes protected from dust, smooth pipettes, positive pressure applied when entering the bath sol...
Shrinking solution recipe is from the lab of R.W. Aldrich. We thank the following funding agencies and foundations for support: National Institutes of Health, National Science Foundation, American Heart Association, Muscular Dystrophy Association, the Donald B. and Delia E. Baxter Foundation, the Klingenstein Fund and the McKnight Endowment for Neuroscience.
Name | Company | Catalog Number | Comments | |
Patch Clamp Amplifier & Software | Instrument | HEKA Instruments | EPC-10 | Or other similar device (e.g. HEKA EPC-9 or Axopatch 200B) |
No. 5 forceps (two pairs) | Tool | Fine Science Tools | ||
Oocyte shrinking solution | Reagent | Ingredient In mMN-methyl-D-glucamine 220HEPES 10MgCl2 1EGTA 10Aspartic Acid 220KCl 2pH to 7.4 w/ N-methyl-D-glucamine | ||
woven mesh | 800 um | Spectrum Labs | 146481 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone