Total Internal Reflection Fluorescence (TIRF) microscopy is a powerful approach to observe structures close to the cell surface at high contrast and temporal resolution. We demonstrate how TIRF can be employed to study protein dynamics at the cortex of cell wall-enclosed bacterial and fungal cells.
Archival formalin fixed and paraffin embedded (FFPE) clinical samples are valuable material for investigation of diseases. Here we demonstrate a sample preparation workflow allowing in-depth proteomic analysis of microdissected FFPE tissue.
This protocol describes in detail how to fabricate and operate microfluidic devices for X-ray diffraction data collection at room temperature. Additionally, it describes how to monitor protein crystallization by dynamic light scattering and how to process and analyze obtained diffraction data.
Here, we present an easy-to-use and versatile method to perform live imaging of developmental processes in general and muscle-tendon morphogenesis in particular in living Drosophila pupae.
We provide a protocol for in vitro self-organization assays of MinD and MinE on a supported lipid bilayer in an open chamber. Additionally, we describe how to enclose the assay in lipid-clad PDMS microcompartments to mimic in vivo conditions by reaction confinement.
Here, we present a pipeline for 3D-correlative focused ion beam milling on guiding the preparation of cellular samples for cryo-electron tomography. The 3D position of fluorescently tagged proteins of interest is first determined by cryo-fluorescence microscopy, and then targeted for milling. The protocol is suitable for mammalian, yeast, and bacterial cells.
This article introduces a simple method for expeditious production of giant unilamellar vesicles with encapsulated cytoskeletal proteins. The method proves to be useful for bottom-up reconstitution of cytoskeletal structures in confinement and cytoskeleton-membrane interactions.
This protocol describes an iSCAT-based image processing and single-particle tracking approach that enables the simultaneous investigation of the molecular mass and the diffusive behavior of macromolecules interacting with lipid membranes. Step-by-step instructions for sample preparation, mass-to-contrast conversion, movie acquisition, and post-processing are provided alongside directions to prevent potential pitfalls.
SOBRE A JoVE
Copyright © 2024 MyJoVE Corporation. Todos os direitos reservados