A method to deliver morpholinos directly into the zebrafish otocyst at 24hpf has been developed. Using microinjection of morpholinos into the lumen of otic vesicle and electroporation to effect penetration, we were able to bypass the effect of morpholinos on the brain and obtain effects specific to the inner ear.
We describe a method protocol for the GC-based analysis of the aldonitrile acetate derivatives of glucosamine and muramic acid extracted from soil. For elucidation of the chemical mechanism, we also present a strategy to confirm the structure of the derivative and the ion fragments formed upon electron ionization.
Cell culture substrates functionalized with microscale patterns of biological ligands have immense utility in the field of tissue engineering. Here, we demonstrate the versatile and automated manufacture of tissue culture substrates with multiple, micropatterned poly(ethylene glycol) brushes presenting orthogonal chemistries that enable spatially precise and site-specific immobilization of biological ligands.
The article describes a method that increases throughput while balancing effort and accuracy for extraction of lipids from the cell membranes of microorganisms for use in characterizing both total lipids and the relative abundance of indicator lipids to determine soil microbial community structure in studies with many samples.
This protocol outlines a simple method for analyzing calcium signals in plants generated by feeding hemipteran insects, such as aphids. Arabidopsis thaliana transformed with the GFP calcium biosensor GCaMP3 allow for the real-time in vivo imaging of calcium dynamics with a high temporal and spatial resolution.
Extracellular glutamate-triggered systemic calcium signaling is critical for the induction of plant defense responses to mechanical wounding and herbivore attack in plants. This article describes a method to visualize the spatial and temporal dynamics of both these factors using Arabidopsis thaliana plants expressing calcium- and glutamate-sensitive fluorescent biosensors.
The goal of this protocol is to direct cell adhesion and growth to targeted areas of grids for cryo-electron microscopy. This is achieved by applying an anti-fouling layer that is ablated in user-specified patterns followed by deposition of extra-cellular matrix proteins in the patterned areas prior to cell seeding.
Here, we present a nonhuman primate model of mother-infant intervention for breastfeeding disorders in the presence of paternal inhibition and maternal neglect. The mate model video complements education to support primate and human caregivers with respect to infants with breastfeeding problems such as pain.
SOBRE A JoVE
Copyright © 2024 MyJoVE Corporation. Todos os direitos reservados