Here we describe a protocol for generating human induced-pluripotent stem cells from patient-derived fibroblast-like synoviocytes, using a lentiviral system without feeder cells.
We propose a protocol for reprogramming peripheral blood mononuclear cells (PBMCs) into induced pluripotent stem cells (iPSCs). By plating the transduced blood cells onto matrix-coated plates with centrifugation, iPSCs are successfully induced from floating cells. This technique suggests a simple and effective reprogramming protocol for cells such as PBMCs and CBMCs.
Mechanical stress can induce the chondrogenic differentiation of stem cells, providing a potential therapeutic approach for the repair of impaired cartilage. We present a protocol to induce the chondrogenic differentiation of adipose-derived stem cells (ASCs) using centrifugal gravity (CG). CG-induced upregulation of SOX9 results in the development of chondrogenic phenotypes.
Here, we propose a protocol for chondrogenic differentiation from cord blood mononuclear cell-derived human induced pluripotent stem cells.
We propose a protocol that shows how to differentiate induced pluripotent stem cell-derived keratinocytes and fibroblasts and generate a 3D skin organoid, using these keratinocytes and fibroblasts. This protocol contains an additional step of generating a humanized mice model. The technique presented here will improve dermatologic research.
SOBRE A JoVE
Copyright © 2024 MyJoVE Corporation. Todos os direitos reservados