This article describes a method to obtain a three-dimensional (3D) structure of helically assembled molecules using cryo-electron microscopy. In this protocol, we use HIV-1 capsid assemblies to illustrate the detailed 3D reconstruction procedure for achieving a density map by the iterative helical real-space reconstruction method.
We describe a correlative microscopy method that combines high-speed 3D live-cell fluorescent light microscopy and high-resolution cryo-electron tomography. We demonstrate the capability of the correlative method by imaging dynamic, small HIV-1 particles interacting with host HeLa cells.
Here, we present a protocol for cryogenic sample preparation and transfer of crystals into the vacuum endstation on beamline I23 at Diamond Light Source, for long-wavelength macromolecular X-ray crystallography experiments.
The present protocol describes high-resolution cryo-electron tomography remote data acquisition using Tomo5 and subsequent data processing and subtomogram averaging using emClarity. Apoferritin is used as an example to illustrate detailed step-by-step processes to achieve a cryo-ET structure at 2.86 Å resolution.
SOBRE A JoVE
Copyright © 2024 MyJoVE Corporation. Todos os direitos reservados