Entrar

In this lesson, we delve into the role of ring conformation and its stability, which determines the spatial arrangement and, consequently, the molecular symmetry and stereoisomerism of cyclic compounds. 1,2-Dimethylcyclohexane is used as a case study to evaluate the possible number of stereoisomers. Here, given the multiple (n = 2) chiral centers, there are 2n = 4 possible configurations that lack a plane of symmetry, as the ring skeleton exists in a non-planar chair conformation. In addition, the potential for ring-flipping in a cyclohexane ring entails that each of these four possible configurations could further exist as a mixture of two or more conformations.

The effect of conformational flexibility in a ring system on the number of possible stereoisomers is shown using a case study of cis and trans configurations of 1,2-dimethylcyclohexane. While the cis configurations are chiral molecules (non-superposable mirror images) with the enantiomers as potential distinct stereoisomers, the rapid ring-flipping at room temperature renders these configurations interconvertible and inseparable. Accordingly, they represent conformations of the same molecule. On the other hand, the trans isomers are chiral molecules that cannot be superposed by rotation of the molecule or ring-flipping and exist as unique compounds. This proves the presence of three stereoisomers for the chosen example—the cis isomer and the pair of trans enantiomers.

This is further elucidated using another ring structure with a difference of substitutional position: 1,3-dimethylcyclohexane. The cis configuration is achiral due to a molecular plane of symmetry. Consequently, the system with two chiral centers exhibits three stereoisomers—the two trans non-interconvertible enantiomers and an achiral cis configuration. In essence, when a ring structure is evaluated, the two aspects that need to be studied are the ring-flipping and the plane of symmetry to determine the possible number of stereoisomers.

Tags
StereoisomerismCyclic CompoundsRing ConformationMolecular SymmetryChiral CentersChair ConformationPlane Of SymmetryRing flippingCis ConfigurationTrans ConfigurationEnantiomers

Do Capítulo 4:

article

Now Playing

4.9 : Estereoisomerismo de Compostos Cíclicos

Estereoisomerismo

8.5K Visualizações

article

4.1 : Quiralidade

Estereoisomerismo

21.6K Visualizações

article

4.2 : Isomeria

Estereoisomerismo

17.3K Visualizações

article

4.3 : Estereoisômeros

Estereoisomerismo

12.1K Visualizações

article

4.4 : Nomenclatura de Enantiômeros

Estereoisomerismo

19.4K Visualizações

article

4.5 : Propriedades de Enantiômeros e Atividade Óptica

Estereoisomerismo

16.3K Visualizações

article

4.6 : Moléculas com Múltiplos Centros Quirais

Estereoisomerismo

10.9K Visualizações

article

4.7 : Projeções Fischer

Estereoisomerismo

12.6K Visualizações

article

4.8 : Misturas Racêmicas e a Resolução de Enantiómeros

Estereoisomerismo

17.7K Visualizações

article

4.10 : Quiralidade em Nitrogênio, Fósforo e Enxofre

Estereoisomerismo

5.5K Visualizações

article

4.11 : Proquiralidade

Estereoisomerismo

3.7K Visualizações

article

4.12 : Quiralidade na Natureza

Estereoisomerismo

11.8K Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados