로그인

In this lesson, we delve into the role of ring conformation and its stability, which determines the spatial arrangement and, consequently, the molecular symmetry and stereoisomerism of cyclic compounds. 1,2-Dimethylcyclohexane is used as a case study to evaluate the possible number of stereoisomers. Here, given the multiple (n = 2) chiral centers, there are 2n = 4 possible configurations that lack a plane of symmetry, as the ring skeleton exists in a non-planar chair conformation. In addition, the potential for ring-flipping in a cyclohexane ring entails that each of these four possible configurations could further exist as a mixture of two or more conformations.

The effect of conformational flexibility in a ring system on the number of possible stereoisomers is shown using a case study of cis and trans configurations of 1,2-dimethylcyclohexane. While the cis configurations are chiral molecules (non-superposable mirror images) with the enantiomers as potential distinct stereoisomers, the rapid ring-flipping at room temperature renders these configurations interconvertible and inseparable. Accordingly, they represent conformations of the same molecule. On the other hand, the trans isomers are chiral molecules that cannot be superposed by rotation of the molecule or ring-flipping and exist as unique compounds. This proves the presence of three stereoisomers for the chosen example—the cis isomer and the pair of trans enantiomers.

This is further elucidated using another ring structure with a difference of substitutional position: 1,3-dimethylcyclohexane. The cis configuration is achiral due to a molecular plane of symmetry. Consequently, the system with two chiral centers exhibits three stereoisomers—the two trans non-interconvertible enantiomers and an achiral cis configuration. In essence, when a ring structure is evaluated, the two aspects that need to be studied are the ring-flipping and the plane of symmetry to determine the possible number of stereoisomers.

Tags

StereoisomerismCyclic CompoundsRing ConformationMolecular SymmetryChiral CentersChair ConformationPlane Of SymmetryRing flippingCis ConfigurationTrans ConfigurationEnantiomers

장에서 4:

article

Now Playing

4.9 : Stereoisomerism of Cyclic Compounds

입체 이성질

8.5K Views

article

4.1 : 키랄리티

입체 이성질

21.7K Views

article

4.2 : 이소머리즘

입체 이성질

17.4K Views

article

4.3 : 스테레오소머스

입체 이성질

12.2K Views

article

4.4 : 명명 엔안티오메르

입체 이성질

19.5K Views

article

4.5 : 엔안티오머 및 광학 활동의 특성

입체 이성질

16.4K Views

article

4.6 : 다중 키랄 센터를 가진 분자

입체 이성질

10.9K Views

article

4.7 : 피셔 프로젝션

입체 이성질

12.7K Views

article

4.8 : 인종 혼합물과 엔안티오머의 해상도

입체 이성질

17.8K Views

article

4.10 : 질소, 인 및 황의 키랄리티

입체 이성질

5.5K Views

article

4.11 : 프로시노성

입체 이성질

3.7K Views

article

4.12 : 자연의 키랄리티

입체 이성질

11.9K Views

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유